Skip to main content

Free Propagation and Successive Scattering

  • Chapter
  • First Online:
  • 1523 Accesses

Part of the book series: Archimedes ((ARIM,volume 26))

Abstract

From the time of his thesis and during his struggle to understand the Dirac equation, Feynman is preoccupied with finding the quantity that will determine the evolution of the wave function. While working on his thesis, he finds that the time evolution of the wave function is determined by the classical action, which is integrated along the possible paths that connect the start and end points of the particle. There is no classical action in the Dirac equation’s description of quantum electrodynamics (QED), since the equation introduced a new degree of freedom: spin. In RMP48, Feynman constructs an action that yields the Dirac equation using his quantization method. However, because he cannot justify the action independently, Feynman considers this treatment to be “purely formal” and unsatisfactory (see Section 3.5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Schrödinger 1930.

  2. 2.

    See, e. g., Galison 1998.

  3. 3.

    Feynman uses units where \(\hbar=1\).

  4. 4.

    See ThPos, equation (2).

  5. 5.

    ThPos, equation (3).

  6. 6.

    ThPos, p. 750.

  7. 7.

    ThPos, p. 752.

  8. 8.

    ThPos, equation (12).

  9. 9.

    ThPos, equation (17).

  10. 10.

    ThPos, p. 750.

  11. 11.

    ThPos, p. 750.

  12. 12.

    ThPos, p. 751.

  13. 13.

    An objection was actually made, probably by Edward Teller, at the conference held at Pocono Manor, Pennsylvania, in 1948 (Weiner 1966, p. 35).

  14. 14.

    Weiner 1966, p. 32.

  15. 15.

    Theory of Positrons; Self-Energy in an Atom; Radiation Scattering; Spreading Dirac Packet, folio 6; cf. Schweber 1994, p. 430f.

  16. 16.

    Cf. Sauer (2008, p. 8).

  17. 17.

    See, e. g., Fermi 1932, Part III.

  18. 18.

    CutOffCl; CutOffQ.

  19. 19.

    CutOffQ, pp. 1434, 1437.

  20. 20.

    See, e. g., Carson (1996a, b).

  21. 21.

    Feynman has introduced this notation in his previous paper, ThPos, p. 757.

  22. 22.

    Dirac Equation a, folio 12, see Section 4.4.

  23. 23.

    Bopp 1940, 1942, cf. McManus 1948; see footnote 4 of CutOffCl.

References

  • Theory of Positrons; Self-Energy in an Atom; Radiation Scattering; Spreading Dirac Packet. (Ca. 1948). Series of selected folios from Box 13, Folder 1.

    Google Scholar 

  • Bopp, F. (1940). ‘Eine lineare Theorie des Elektrons’. In: Annalen der Physik 38, pp. 345–384.

    Article  MathSciNet  ADS  Google Scholar 

  • Bopp, F. (1942). ‘Lineare Theorie des Elektrons. II’. In: Annalen der Physik 42, pp. 573–608.

    MathSciNet  Google Scholar 

  • Carson, C. (1996a). ‘The Peculiar Notion of Exchange Forces–I: Origins in Quantum Mechanics, 1926–1928’. In: Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 27.1 (Mar. 1996), pp. 23–45.

    Article  MathSciNet  Google Scholar 

  • Carson, C. (1996b). ‘The Peculiar Notion of Exchange Forces–II: From Nuclear Forces to QED, 1929–1950’. In: Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 27.2 (June 1996), pp. 99–131.

    Article  MathSciNet  Google Scholar 

  • Fermi, E. (1932). ‘Quantum Theory of Radiation’. In: Reviews of Modern Physics 4.1 (Jan. 1932), pp. 87–132.

    Article  Google Scholar 

  • Galison, P. (1998). ‘Feynman’s War: Modelling Weapons, Modelling Nature’. In: Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 29.3 (Sept. 1998), pp. 391–434.

    Article  Google Scholar 

  • McManus, H. (1948). ‘Classical Electrodynamics without Singularities’. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 195.1042, pp. 323–336.

    MathSciNet  Google Scholar 

  • Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Sauer, T. (2008). Remarks on the Origin of Path Integration: Einstein and Feynman. URL: http://arxiv.org/abs/0801.1654.

  • Schrödinger, E. (1930). ‘Über die kräftefreie Bewegung in der relativistischen Quantenmechanik’. In: Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Phys. Math. Klasse 24. Berlin: Verlag der Akademie derWissenschaften in Kommission beiWalter de Gruyter u. Co. Reprinted in Schrödinger 1984, pp. 357–368, 418–428.

    Google Scholar 

  • Weiner, C. (1966a). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 2’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Wüthrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wüthrich, A. (2010). Free Propagation and Successive Scattering. In: The Genesis of Feynman Diagrams. Archimedes, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9228-1_5

Download citation

Publish with us

Policies and ethics