Advertisement

Introduction: Origin, Use and Interpretation of Feynman Diagrams

  • Adrian WüthrichEmail author
Chapter
Part of the Archimedes book series (ARIM, volume 26)

Abstract

“Like the silicon chip of more recent years, the Feynman diagram was bringing computation to the masses.” Thus Julian Schwinger, displaying a hint of both disdain and admiration, appraises the enormous impact of Feynman diagrams as a mathematical tool on the daily work of theoretical physicists. And indeed, since Richard P. Feynman (1918–1988) invented them, around the year 1948, and Freeman J. Dyson subsequently systematized them, these diagrams have undeniably become an indispensable tool for performing calculations in modern quantum field theory. They are omnipresent in the theoretical treatments of an important class of elementary particle phenomena, in particular quantum electrodynamics (QED). In modern textbooks on quantum field theory—I will quote from one of them below—they take centre stage, while the teaching of their use is one of the essential components in courses on the subject.

Keywords

Feynman Diagram Mathematical Expression Perturbative Expansion Lamb Shift Virtual Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baeyer, H. C. von (1999). ‘Nota Bene’. In: The Sciences (January/February 1999). New York, NY: The New York Academy of Sciences, pp. 12–15.Google Scholar
  2. Bethe, H. A. and S. S. Schweber (1955). Mesons and Fields. New York, NY: Row, Peterson.Google Scholar
  3. Brown, J. R. (1996). ‘Illustration and Inference’. In: Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Art in Science. Ed. by B. Baigrie. Toronto, ON: University of Toronto Press. Chap. 8, pp. 250–268.Google Scholar
  4. Brown, L. M., ed. (1993). Renormalization. From Lorentz to Landau (and Beyond). New York, NY: Springer.Google Scholar
  5. Dancoff, S. M. (1939). ‘On Radiative Corrections for Electron Scattering’. In: Physical Review 55.10 (May 1939), pp. 959–963.CrossRefGoogle Scholar
  6. Dresden, M. (1993). ‘Renormalization in Historical Perspective—The First Stage’. In: Renormalization. From Lorentz to Landau (and Beyond). Ed. by L. M. Brown. New York, NY: Springer.Google Scholar
  7. Dyson, F. J. (1965). ‘Tomonaga, Schwinger, and Feynman Awarded Nobel Prize for Physics’. In: Science. 3rd ser. 150.3696 (Oct. 1965), pp. 588–589.Google Scholar
  8. Euler, H. (1936). ‘Über die Streuung von Licht an Licht nach der Diracschen Theorie’. In: Annalen der Physik 418.5, pp. 398–448.ADSCrossRefGoogle Scholar
  9. Feynman, R. P. (1966). ‘The Development of the Space-Time View of Quantum Electrodynamics’. In: Science 153.3737. Nobel lecture, pp. 699–708.CrossRefGoogle Scholar
  10. Galison, P. (1983). ‘The Discovery of The Muon and the Failed Revolution Against Quantum Electrodynamics’. In: Centaurus 26, pp. 262–316.MathSciNetADSCrossRefGoogle Scholar
  11. Goodman, N. (1968). Languages of Art: An Approach to a Theory of Symbols. Indianapolis, IN: Hackett Publishing.Google Scholar
  12. Griffiths, D. (1987). Introduction to Elementary Particles. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  13. Harré, R. (1988). ‘Parsing the Amplitudes’. In: Philosophical Foundations of Quantum Field Theory. Ed. by H. R. Brown and R. Harré. Oxford: Clarendon Press, pp. 59–71.Google Scholar
  14. Huggett, N. (2000). ‘Philosophical Foundations of Quantum Field Theory’. In: The British Journal for the Philosophy of Science 51.4, pp. 617–637.MathSciNetCrossRefGoogle Scholar
  15. Kaempffer, F. A. (1965). Concepts in Quantum Mechanics. New York, NY: Academic.zbMATHGoogle Scholar
  16. Kaiser, D. (2005). Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. Chicago: The University of Chicago Press.zbMATHGoogle Scholar
  17. Kusch, P. and H. M. Foley (1948). ‘The Magnetic Moment of the Electron’. In: Physical Review 74.3 (Aug. 1948), pp. 250–263.CrossRefGoogle Scholar
  18. Lamb, W. E. and R. C. Retherford (1947). ‘Fine Structure of the Hydrogen Atom by a Microwave Method’. In: Physical Review 72.3 (Aug. 1947), pp. 241–243.CrossRefGoogle Scholar
  19. Mehra, J. (1994). The Beat of a Different Drum: The Life and Science of Richard Feynman. New York, NY: Oxford University Press.zbMATHGoogle Scholar
  20. Meynell, L. (2008). ‘Why Feynman Diagrams Represent’. In: International Studies in the Philosophy of Science 22.1, pp. 39–59.MathSciNetCrossRefGoogle Scholar
  21. Miller, A. I. (1984). Imagery in Scientific Thought: Creating 20th-Century Physics. Boston, MA: Birkhäuser.Google Scholar
  22. Pais, A. (1986). Inward Bound: Of Matter and Forces in the Physical World. New York, NY: Oxford University Press.Google Scholar
  23. Pasternack, S. (1938). ‘Note on the Fine Structure of Ha and Da’. In: Physical Review 54.12 (Dec. 1938), p. 1113.CrossRefGoogle Scholar
  24. Pauli, W., A. Hermann and K. von Meyenn (1979). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Ua: Scientific Correspondence with Bohr, Einstein, Heisenberg, A. o. New York, NY: Springer.Google Scholar
  25. Peskin, M. E. and D. V. Schroeder (1995). An Introduction to Quantum Field Theory. Boulder, CO: Westview Press.Google Scholar
  26. Sakurai, J. J. (1967). Advanced Quantum Mechanics. Fifth printing, Jan. 1976. Reading, MA: Addison-Wesley.Google Scholar
  27. Schweber, S. S. (1986b). ‘Shelter Island, Pocono, and Oldstone: The Emergence of American Quantum Electrodynamics after World War II’. In: Osiris. 2nd ser. 2, pp. 265–302.MathSciNetCrossRefGoogle Scholar
  28. Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.zbMATHGoogle Scholar
  29. Schwinger, J. (1948a). ‘On Quantum-Electrodynamics and the Magnetic Moment of the Electron’. In: Physical Review 73.4 (Feb. 1948), pp. 416–417.CrossRefGoogle Scholar
  30. Schwinger, J. (1948b). ‘Quantum Electrodynamics. I. A Covariant Formulation’. In: Physical Review 74.10 (Nov. 1948), pp. 1439–1461.MathSciNetCrossRefGoogle Scholar
  31. Schwinger, J. (1958). Selected Papers on Quantum Electrodynamics. New York, NY: Dover Publications.zbMATHGoogle Scholar
  32. Schwinger, J. (1983). ‘Renormalization Theory of Quantum Electrodynamics: An Individual View’. In: The Birth of Particle Physics. Ed. by L. Brown and L. Hoddeson. Cambridge: Cambridge University Press, pp. 329–353.Google Scholar
  33. Shin, S.-J. (1994). The Logical Status of Diagrams. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  34. Stueckelberg, E. C. G. (1934). ‘Relativistisch invariante Störungstheorie des Diracschen Elektrons I. Teil: Streustrahlung und Bremsstrahlung’. In: Annalen der Physik 413.4, pp. 367–389.ADSCrossRefGoogle Scholar
  35. Stueckelberg, E. C. G. (1938). ‘DieWechselwirkungs Kraefte in der Elektrodynamik und in der Feldtheorie der Kernkraefte (Teil I)’. In: Helvetica Physica Acta 11, pp. 225–244.zbMATHGoogle Scholar
  36. Tomonaga, S.-I. (1973). ‘Development of Quantum Electrodynamics’. In: The Physicist’s Conception of Nature. Ed. by J. Mehra. Copyright 1966 by the Nobel Foundation and Elsevier, Netherlands. D. Reidel. Chap. 19, pp. 404–412.Google Scholar
  37. Wüthrich, A. (2007). ‘Book review: “Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. David Kaiser.”’ In: Studies in History and Philosophy of Modern Physics 38.3 (Sept. 2007), pp. 586–589.CrossRefGoogle Scholar
  38. Walton, K. (1990). Mimesis as Make-Believe: On the Foundations of the Representational Arts. Cambridge, MA: Harvard University Press.Google Scholar
  39. Weinberg, S. (1977). ‘The Search for Unity, Notes for a History of Quantum Field Theory’. In: Daedalus 106.4, pp. 17–35.Google Scholar
  40. Weiner, C. (1966a). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 2’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.Google Scholar
  41. Weingard, R. (1988). ‘Virtual Particles and the Interpretation of Quantum Field Theory’. In: Philosophical Foundations of Quantum Field Theory. Ed. by H. R. Brown and R. Harré. Oxford: Clarendon Press, pp. 43–58.Google Scholar
  42. Weisskopf, V. F. (1934). ‘Über die Selbstenergie des Elektrons’. In: Zeitschrift für Physik 89, pp. 27–39.ADSCrossRefGoogle Scholar
  43. Weisskopf, V. F. (1939). ‘On the Self-Energy and the Electromagnetic Field of the Electron’. In: Physical Review 56.1 (July 1939), pp. 72–85.CrossRefGoogle Scholar
  44. Weisskopf, V. F. (1983). ‘Growing up With Field Theory: The Development of Quantum Electrodynamics’. In: The Birth of Particle Physics. Ed. by L. M. Brown and L. Hoddeson. Cambridge: Cambridge University Press.  Chap. 3, pp. 56–81.Google Scholar
  45. Wentzel, G. (1943). Einführung in die Quantentheorie der Wellenfelder. Wien: Franz Deuticke.zbMATHGoogle Scholar
  46. Dyson, F. J. (2006). Advanced Quantum Mechanics: Second Edition. URL: http://arxiv. org/abs/quant-ph/0608140v1.
  47. Kuhn, T. S. (1962). The Structure of Scientific Revolutions. 1st ed. Vol. 2. International Encyclopedia of Unified Science 2. (2nd ed. 1970). Chicago: University of Chicago Press.Google Scholar
  48. Lacki, J., H. Ruegg and V. Telegdi (1999). The Road to Stueckelberg’s Covariant Perturbation Theory as Illustrated by Successive Treatments of Compton Scattering. URL: http://arxiv.org/abs/physics/9903023.
  49. Graβhoff, G., H.-C. Liess and K. Nickelsen (2002). ‘Visualisiertes Wissen: Eine Einführung in die Analyse wissenschaftlicher Abbildungen’. Unpublished manuscript. History and Philosophy of Science. University of Bern.Google Scholar
  50. Nickelsen, K. (2002). ‘Entstehung, Inhalt und Funktion wissenschaftlicher Pflanzenbilder des 18. Jahrhunderts’. PhD thesis. University of Bern.Google Scholar
  51. Oppenheimer, J. R. (1950). ‘Electron Theory’. In: Rapports du 8e Conseil de Physique, Solvay. Reprinted in Schwinger 1958, pp. 145–155, 269–281.Google Scholar
  52. Tödtli, B. (2004). ‘QCD Corrections to the Wilson Coefficients for \(b\rightarrow\mathit{sl}^{+}l^{-}\) in 2HDMs: Photonic Contributions’. MA thesis. University of Bern.Google Scholar
  53. Weinberg, S. (1995). ‘Historical Introduction’. In: The Quantum Theory of Fields. Cambridge: Cambridge University Press.  Chap. 1, pp. 1–48.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of Bern, History and Philosophy of Science, Exact SciencesBernSwitzerland

Personalised recommendations