Skip to main content

The Geomicrobiology of Arsenic

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Since the beginning of life on Earth, microorganisms have had the remarkable ability­ to evolve the necessary molecular machinery to cope with and even benefit from high concentrations of toxic metals in the environment. Many metals (in trace amount) play an integral role in biological processes; however, many of the same metals, as well as those not required in biological systems, can be quite harmful.This is most commonly a consequence of the metal concentration; ­however, speciation and physicochemical form of the element are added factors. Some metals that microorganisms depend on in low concentrations include arsenic, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, sodium, nickel, and zinc; whereas, aluminum, cadmium, gold, lead, mercury, and silver are not known to be part of cellular structures or processes (Bruins et al. 2000; Stolz et al. 2002). The essential metals have been found to be crucial ­components in redox processes, gene expression, biomolecule activity, cellular osmotic balance, and protein and bacterial cell wall structures (Hughes and Poole 1989; Ji and Silver 1995; Poole and Gadd 1989). Yet, if any of these metals exceed certain concentrations, microorganisms must use resistance mechanisms to survive the ‘metal stress’. Because many environments inhabited by microorganisms have continuously contained poisonous elements, resistance mechanisms most likely developed shortly after the ­evolution of prokaryotic life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  PubMed  CAS  Google Scholar 

  • Ahmann D, Krumholz LR, Hemond H, Lovley DR, Morel FMM (1997) Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ Sci Technol 31:2923–2930

    Article  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    PubMed  CAS  Google Scholar 

  • Banfield JF, Moreau JW, Chan CS, Welch SA, Little B (2001) Mineralogical biosignatures and the search for life on Mars. Astrobiology 1:447–465

    Article  PubMed  CAS  Google Scholar 

  • Banfield JF, Verberkmoes NC, Hettich RL, Thelen MP (2005) Proteogenomic approaches for the molecular characterization of natural microbial communities. Omics 9:301–333

    Article  PubMed  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  PubMed  CAS  Google Scholar 

  • Blum JS, Han S, Lanoil B, Saltikov C, Witte B, Tabita FR, Langley S, Beveridge TJ, Jahnke L, Oremland RS (2009) Ecophysiology of “Halarsenatibacter silvermanii” Strain SLAS-1(T), gen. nov., sp nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles lake, California. Appl Environ Microbiol 75:1950–1960

    Article  PubMed  Google Scholar 

  • Bruins M, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  PubMed  CAS  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic sea. Appl Environ Microbiol 68:3978–3987

    Article  PubMed  CAS  Google Scholar 

  • Bruns A, Nubel U, Cypionka H, Overmann J (2003) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Rensing C, Li X, Wang G (2009) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83:715–725

    Article  PubMed  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Challenger F (1951) Biological methylation. Adv Enzymol Relat Subj Biochem 12:429–491

    PubMed  CAS  Google Scholar 

  • Clingenpeel SR, D’Imperio S, Oduro H, Druschel GK, McDermott TR (2009) Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl Environ Microbiol 75:3362–3365

    Article  PubMed  CAS  Google Scholar 

  • Connon SA, Koski AK, Neal AL, Wood SA, Magnuson TS (2008) Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord desert. FEMS Microbiol Ecol 64:117–128

    Article  PubMed  CAS  Google Scholar 

  • Davis KE, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski PM, Long W, Farley KJ, Mahony JD, Capitani JF, Di Toro DM (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176

    Article  PubMed  CAS  Google Scholar 

  • Eary LE (1992) The solubility of amorphous As2S3 from 25 to 90°C. Geochim Cosmochim Acta 56:2267–2278

    Article  CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9:125–132

    Article  PubMed  CAS  Google Scholar 

  • Gadd G (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    Article  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  PubMed  CAS  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Harold FM, Baarda JR (1966) Interaction of arsenate with phosphate-transport systems in wild- type and mutant Streptococcus faecalis. J Bacteriol 91:2257–2262

    PubMed  CAS  Google Scholar 

  • Head M (1998) Bioremediation: towards a credible technology. Microbiology 144:599–608

    Article  CAS  Google Scholar 

  • Hindmarsh JT (2000) Arsenic, its clinical and environmental significance. J Trace Elem Exp Med 13:165–172

    Article  CAS  Google Scholar 

  • Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512

    Article  PubMed  CAS  Google Scholar 

  • Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Biochemistry 43:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Hollibaugh JT, Carini S, Gurleyuk H, Jellison R, Joye SB, LeCleir G, Meile C, Vasquez L, Wallschlager D (2005) Arsenic speciation in Mono lake, California: response to seasonal stratification and anoxia. Geochim Cosmochim Acta 69:1925–1937

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and micro-organism. Chapman & Hall, London, pp 280–285

    Google Scholar 

  • Inskeep WP, Mancur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  PubMed  CAS  Google Scholar 

  • Jackson BP, Bertsch PM (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ Sci Technol 35:4868–4873

    Article  PubMed  CAS  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    Article  PubMed  CAS  Google Scholar 

  • Jones CA, Langner HW, Anderson K, McDermott TR, Inskeep WP (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64:600–608

    Article  CAS  Google Scholar 

  • Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    Article  PubMed  CAS  Google Scholar 

  • Krautler B (1990) Chemistry of methylcorrinoids related to their roles in bacterial C1 metabolism. FEMS Microbiol Rev 7:349–354

    PubMed  CAS  Google Scholar 

  • Ledbetter RN, Connon SA, Neal AL, Dohnalkova A, Magnuson TS (2007) Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord basin, Oregon. Appl Environ Microbiol 73:5928–5936

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2:85–90

    Article  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  PubMed  CAS  Google Scholar 

  • Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V) respiration. Science 306:455

    Article  PubMed  CAS  Google Scholar 

  • Matera V, Le Hecho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut 126:51–64

    Article  PubMed  CAS  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110(Suppl 5):745–748

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  PubMed  CAS  Google Scholar 

  • Nealson KH, Belz A, McKee B (2002) Breathing metals as a way of life: geobiology in action. Antonie Leeuwenhoek 81:215–222

    Article  PubMed  CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel F (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    PubMed  CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FM (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  PubMed  CAS  Google Scholar 

  • NRC (1999) National Reseach Council Report: arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF, Hollibaugh JT (2004) The microbial arsenic cycle in Mono lake, CA. FEMS Microbiol Ecol 48:15–27

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  PubMed  CAS  Google Scholar 

  • Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187:171–183

    Article  PubMed  CAS  Google Scholar 

  • Peterson ML, Carpenter R (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently stratified fjord. Mar Chem 12:295–321

    Article  CAS  Google Scholar 

  • Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL Press, Oxford, pp 1–37

    Google Scholar 

  • Prasad KS, Subramanian V, Paul J (2009) Purification and characterization of arsenite oxidase from Arthrobacter sp. Biometals 22(5):711–721

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Quinn JP, McMullan G (1995) Carbon-arsenic bond cleavage by a newly isolated gram-negative bacterium, strain ASV2. Microbiology 141(Pt 3):721–725

    Article  PubMed  CAS  Google Scholar 

  • Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC 2nd, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Reardon CL, Cummings DE, Petzke LM, Kinsall BL, Watson DB, Peyton BM, Geesey GG (2004) Composition and diversity of microbial communities recovered from surrogate minerals­ incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol 70:6037–6046

    Article  PubMed  CAS  Google Scholar 

  • Rhine ED, Garcia-Dominguez E, Phelps CD, Young LY (2005) Environmental microbes can speciate and cycle arsenic. Environ Sci Technol 39:9569–9573

    Article  PubMed  CAS  Google Scholar 

  • Rhine ED, Ni Chadhain SM, Zylstra GJ, Young LY (2007) The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun 354:662–667

    Article  PubMed  CAS  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    PubMed  CAS  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100:10983–10988

    Article  PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229

    Article  PubMed  Google Scholar 

  • Seyler P, Martin JM (1989) Biogeochemical processes affecting total arsenic and arsenic species distribution in a permanently stratified lake. Envriron Sci Technol 23:1258–1263

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005a) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (2005b) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  PubMed  CAS  Google Scholar 

  • Song B, Chyun E, Jaffe PR, Ward BB (2009) Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol Ecol 68:108–117

    Article  PubMed  CAS  Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  PubMed  CAS  Google Scholar 

  • Stupperich E (1993) Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev 12:349–365

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13

    CAS  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Waters SB, Devesa V, Del Razo LM, Styblo M, Thomas DJ (2004a) Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem Res Toxicol 17:404–409

    Article  PubMed  CAS  Google Scholar 

  • Waters SB, Devesa V, Fricke MW, Creed JT, Styblo M, Thomas DJ (2004b) Glutathione modulates recombinant rat arsenic (+3 oxidation state) methyltransferase-catalyzed formation of trimethylarsine oxide and trimethylarsine. Chem Res Toxicol 17:1621–1629

    Article  PubMed  CAS  Google Scholar 

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    PubMed  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58

    PubMed  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the National Science Foundation, the Department of Energy, and the National Aeronautics and Space Administration for funding various aspects of our research on the ecophysiology of arsenic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy S. Magnuson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Ledbetter, R.N., Magnuson, T.S. (2010). The Geomicrobiology of Arsenic. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_7

Download citation

Publish with us

Policies and ethics