Skip to main content

Role of Microorganisms in Banded Iron Formations

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Banded iron formations (BIF) represent the largest source of iron in the world. They formed throughout the Precambrian, and today are globally distributed on the remnants of the ancient cratons. The first BIF dates back to at least 3.9–3.8 billion years. Little is known about this early period in earth’s history, in particular about the presence of molecular oxygen, O2, and therefore also about the deposition mechanisms of BIF at that time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    Article  PubMed  CAS  Google Scholar 

  • Ayres DE (1972) Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge member, Hamersley Group, Western Australia. Econ Geol 67:1214–1233

    Article  CAS  Google Scholar 

  • Baur ME, Hayes JM, Studley SA, Walter MR (1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron formations in the Hamersley Group of Western Australia. Economic Geol 80:270–282

    Article  CAS  Google Scholar 

  • Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273

    Article  CAS  Google Scholar 

  • Beukes NJ, Klein C (1992) Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. University of Cambridge Press, Cambridge, UK, pp 147–151

    Google Scholar 

  • Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–162

    Article  PubMed  CAS  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Braterman PS, Cairns-Smith AG, Sloper RW (1983) Photo-oxidation of hydrated Fe2+ – significance for banded iron formations. Nature 303:163–164

    Article  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence for stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808

    Article  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143

    Article  CAS  Google Scholar 

  • Crowe SA, Jones C, Katsev S et al (2008) Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci USA 105:15938–15943

    Article  PubMed  CAS  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  PubMed  CAS  Google Scholar 

  • Francois LM (1986) Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320:352–354

    Article  CAS  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Article  PubMed  CAS  Google Scholar 

  • Garrels RM, Perry EA Jr, MacKenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179

    Article  CAS  Google Scholar 

  • Garrels RM (1987) A Model for the deposition of the microbanded Precambrian iron formations. American Journal of Science 287:81–106

    Google Scholar 

  • Gross GA (1965) Geology of iron deposits in Canada, Volume 1. General geology and evaluation of iron deposits, Geological Survey of Canada Economic Report, 22

    Google Scholar 

  • Han T-M (1978) Microstructures of magnetite as guides to its origin in some Precambrian iron-formations. Fortschr Mineral 56:105–142

    CAS  Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW, Klein C (eds) Earth’s earliest biosphere, its origins and evolution. Princeton University Press, Princeton, NJ, pp 291–301

    Google Scholar 

  • Hegler F, Posth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron(II)- oxidizing bacteria-implications for modern and ancient environments. FEMS Microbiol Ecol 66:250–260

    Article  PubMed  CAS  Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiol 172:116–124

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PF, Schrag DP (2000) Snowball Earth. Sci Am 282(January):68–75

    Google Scholar 

  • Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68:1169–1172

    Article  CAS  Google Scholar 

  • Jacobsen SB, Pimentel-Klose MR (1988) A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans. Earth Planet Sci Lett 87:29–44

    Article  CAS  Google Scholar 

  • Jaffrés JBD, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49:236–294

    Article  Google Scholar 

  • James HL (1966) Chemistry of the iron-rich sedimentary rocks. In: Fleischer M (ed) Data of geochemistry, 6th edn. Paper 440-W. US Govt. Printing Office, Washington, DC

    Google Scholar 

  • Jaun B, Thauer RK (2007) Nickel and its surprising impact in nature. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 2. Wiley, Chichester, UK, pp 323–356

    Google Scholar 

  • Jiao Y, Kappler A, Croal LR, Newman DK (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris Strain TIE-1. Appl Environ Microbiol 71:1–10

    Article  Google Scholar 

  • Johnson CM, Beard BL, Beukes NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contrib Mineral Petrol 144:523–547

    Article  CAS  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868

    Article  CAS  Google Scholar 

  • Kasting JF, Howard MT, Wallmann K, Veizer J, Shields G, Jaffrés J (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93

    Article  CAS  Google Scholar 

  • Kholodov VN (2008) Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geol Ore Deposits 50:299–319

    Article  Google Scholar 

  • Klein C (2005) Some Precambrian Banded Iron Formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral 90:1473–1499

    Article  CAS  Google Scholar 

  • Klein C, Beukes NJ (1989) Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol 84:1733–1774

    Article  CAS  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  • Knauth PL, Lowe DR (2003) High Archaen climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580

    Article  CAS  Google Scholar 

  • Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082

    Article  CAS  Google Scholar 

  • Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177

    Article  CAS  Google Scholar 

  • Konhauser KO, Amskold L, Lalonde SV, Posth NR, Kappler A, Anbar A (2007) Decoupling photochemical Fe(II) oxidation from shallow-water deposition. Earth Planet Sci Lett 258:87–100

    Article  CAS  Google Scholar 

  • Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754

    Article  PubMed  CAS  Google Scholar 

  • Krapež B, Barley ME, Pickard AL (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Paleoproterozoic Brockman supersequence of Western Australia. Sedimentology 50:979–1011

    Article  Google Scholar 

  • Laskar J, Robutel P (1993) The chaotic obliquity of the planets. Nature 361:608–612

    Article  Google Scholar 

  • McConchie D (1987) The geology and geochemistry of the Joffre and Whaleback Shale members of the Brockman iron formation, Western Australia. In: Appel PWU, LaBerge GL (eds) Precambrian iron-formations. Theophrastus, Athens

    Google Scholar 

  • Mojzsis SJ (2003) Probing early atmospheres. Nature 425:249–251

    Article  PubMed  CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3, 800 million years ago. Nature 384:55–59

    Article  PubMed  CAS  Google Scholar 

  • Morris RC (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res 60:243–286

    Article  CAS  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  PubMed  CAS  Google Scholar 

  • Perry EC, Tan FC, Morey GB (1973) Geology and stable isotope geochemistry of the Biwabik iron formation, northern Minnesota. Econ Geol 68:1110–1125

    Article  CAS  Google Scholar 

  • Posth NR, Hegler F, Konhauser KO, Kappler A (2008) Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat Geosci 10:703–708

    Article  Google Scholar 

  • Posth NR, Konhauser KO, Kappler A (2010a) Microbiological processes in BIF deposition. In: Glenn C, Jarvis I (eds) Authigenic minerals: sedimentology, geochemistry, origins, distribution and applications. Journal of Sedimentology IAS Special Publication Series (in press)

    Google Scholar 

  • Posth NR, Konhauser KO, Kappler A (2010b) Banded iron formations. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, Hiedelberg (in press)

    Google Scholar 

  • Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-ethylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy metals in ca. 3250–2750 Ma sandstones from the Pilbara Craton. Aust Geol 27:115–118

    Article  CAS  Google Scholar 

  • Robert F, Chaussidon M (2006) A Paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969

    Article  PubMed  CAS  Google Scholar 

  • Runnegar B (1991) Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Palaeogeogr Palaeoclimatol Palaeoecol 71:97–111

    Article  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646

    Article  PubMed  CAS  Google Scholar 

  • Shields GA, Kasting JF (2007) Palaeoclimatology: evidence for hot early oceans? Nature 447:E1

    Article  PubMed  CAS  Google Scholar 

  • Siever R (1992) The silica cycle in the Precambrian. Geochim Cosmochim Acta 56:3265–3272

    Article  CAS  Google Scholar 

  • Straub KL, Rainey FR, Widdel F (1999) Rhodovulum iodosum sp. nov. and Rhodovulum ­robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol 49:729–735

    Article  PubMed  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  PubMed  CAS  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416 Myr old ocean. Nature 431:549–552

    Article  PubMed  CAS  Google Scholar 

  • Trendall AF (1968) Three Great Basins of Precambrian banded iron formation deposition: a systematic comparison. Geol Soc Am Bull 79:1527–1544

    Article  CAS  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovely DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Article  PubMed  CAS  Google Scholar 

  • Walter XA, Picazo A, Miracle RM, Vicente E, Camacho A, Aragno M, Zopfi J (2009) Anaerobic microbial iron oxidation in an iron-meromictic lake. Geochim Cosmochim Acta 73(13):A1405

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Xiong J (2006) Photosynthesis: what color was its origin? Genome Biol 7:245

    Article  PubMed  Google Scholar 

  • Yamaguchi KE, Johnson CM, Beard BL, Ohmoto H (2005) Biogeochemical cycling of iron in the Archean Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chem Geol 218:135–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the German Research Foundation (DFG) made to AK (KA 1736/2-1, 2-2, 4-1, and 12-1), funding from the DFG and the University of Tuebingen to IK, and the Natural Sciences and Engineering Research Council of Canada to KK. We would also like to thank Nicole Posth and Merle Eickhoff for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Konhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Koehler, I., Konhauser, K., Kappler, A. (2010). Role of Microorganisms in Banded Iron Formations. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_14

Download citation

Publish with us

Policies and ethics