Skip to main content

Chemoautotrophic Origin of Life: The Iron–Sulfur World Hypothesis

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

The study of the origin of life is an immature science. If we apply the strictures of Immanuel Kant it may not be considered a mature science until it can be said to have embarked on a course of orderly progress. Indeed, if we review the development of research into the origin of life, we have to admit that it is still far from presenting the image of progress. It may be best characterized as an exercise of randomly groping around – and doing so at a number of different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrault J, Boulinguiez M, Forquy C, Maurel R (1987) Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten-alumina catalysts. Appl Catal 33:309–330

    Article  CAS  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge/Kegan Paul, London

    Google Scholar 

  • Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand accelerated catalysis. Angew Chem Int Ed 34:1059–1070

    Article  CAS  Google Scholar 

  • Blackmond DG (2009) An examination of the role of autocatalytic cycles in the chemistry of proposed primordial reactions. Angew Chem Int Ed 48:386–390

    Article  CAS  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, London

    Google Scholar 

  • Cockell CS (2006) The origin and emergence of life under impact bombardment. Phil Trans R Soc B 361:1845–1875

    Article  PubMed  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Corazza E (1986) Field workshop on volcanic gases, Volcano (Italy), 1982, General Report. Geothermics 15:197–200

    Article  CAS  Google Scholar 

  • Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta SP:59–69

    Google Scholar 

  • Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730

    Article  PubMed  CAS  Google Scholar 

  • Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron-sulfide surfaces. Angew Chem Int Ed 42:1540–1543

    Article  Google Scholar 

  • Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744

    Article  CAS  Google Scholar 

  • Filtness MJ, Butler IB, Rickard D (2003) The origin of life: the properties of iron sulphide membranes. Trans Inst Min Metall Sect B 112:171–172

    CAS  Google Scholar 

  • Fukuda F, Dokiya M, Kameyama T, Kotera Y (1977) Catalytic activity of metal sulfides for the reaction, H2S + CO = H2 + COS. J Catal 49:379–382

    Article  CAS  Google Scholar 

  • Gräwert T, Kaiser J, Zepeck F et al (2004) IspH Protein of Escherichia coli: Studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855

    Article  PubMed  Google Scholar 

  • Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S unnder primordial conditions. Science 276:245–247

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids on (Fe, Ni)S surfaces: Implications for the origin of life. Science 281:670–672

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 324:630–632

    Article  Google Scholar 

  • Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. Rev Mineralog 30:187–230

    CAS  Google Scholar 

  • Jacobsen SB (2003) How old is planet Earth? Science 300:1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Jékely G (2008) Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 3:31–45

    Article  PubMed  Google Scholar 

  • Kandler O (1994a) Cell wall biochemistry in Archaea and its phylogenetic implications. J Biol Phys 20:165–169

    Article  CAS  Google Scholar 

  • Kandler O (1994) The early diversification of life. In: Bengtson S (ed) Early life on earth: Nobel Symposium No. 84. Columbia University Press, New York, p 152

    Google Scholar 

  • Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 19–28

    Google Scholar 

  • Kant I (1790) Krtik der Urteilskraft, Translation by Meredith JC. 1952. The critique of judgment. Clarendon, Oxford, pp 81, 82

    Google Scholar 

  • Kelley DS, Karon JA, Blackman DA et al (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149

    Article  PubMed  CAS  Google Scholar 

  • King GAM (1977) Symbiosis and the origin of life. Orig Life 8:39–53

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and on terrestrial planets from Hf-W chronometry. Nature 418:952–955

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H (1972) Selbstorganisation molekularer systeme und die evolution des genetischen apparats. Angew Chem 84:838–862

    Article  Google Scholar 

  • Kuma K, Paplawsky W, Gedulin B, Arrhenius G (1989) Mixed-valence hydroxides as bioorganic host minerals. Orig Life Evol Biosph 19:573–582

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Minaba M, Ogi N, Kammekura M (2005) Thermococcus coalescens sp. nov., a cell- fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  CAS  Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358:27–85

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181

    Article  PubMed  CAS  Google Scholar 

  • Mukhin L (1974) Evolution of organic compounds in volcanic regions. Nature 251:50–51

    Article  CAS  Google Scholar 

  • Nägeli C (1884) Mechanisch-physiologische Theorie der Abstammungslehre. Oldenbourg, München, pp 83–101

    Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Evol 38:381–393

    CAS  Google Scholar 

  • Oparin AI (1924) Proiskhozhdenie zhizny. Moscow. Izd. Mosk. Rabochii. English translation by Synge A (1967). In: Bernal JD (ed) The origin of life. Weidenfeld & Nicolson, London, pp 199–234

    Google Scholar 

  • Owen AJ (1961) Calcium cyanamide synthesis. Part 1. – Thermodynamic studies. Trans Faraday Soc 57:670–677

    Article  CAS  Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the early archaean. Geochim Cosmochim Acta 65:4215–4229

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154:377–402

    Article  CAS  Google Scholar 

  • Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179

    Article  PubMed  Google Scholar 

  • Siefert JL, Martin KA, Abdi F, Widger WR, Fox GE (1977) Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol 45:467–472

    Article  Google Scholar 

  • Taylor P, Rummery TE, Owen DG (1979) Reactions of iron mono-sulfide solids with aqueous hydrogen sulfide up to 160°C. J Inorg Nucl Chem 41:1683–1687

    Article  CAS  Google Scholar 

  • Wächtershäuser G (1988a) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1988b) German Patent Application P 38 12 158.1, filed April 4, 1988 and published November 3, 1988. p 9

    Google Scholar 

  • Wächtershäuser G (1988c) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210

    Article  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1997) The origin of life and its methodological challenge. J Theor Biol 187:483–494

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1998a) The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron–sulfur world. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 47–57

    Google Scholar 

  • Wächtershäuser G (1998b) Towards a reconstruction of ancestral genomes by gene cluster alignment. Syst Appl Microbiol 21:473–477

    Article  Google Scholar 

  • Wächtershäuser G (2001) RNA world vs. autocatalytic anabolism. In: Dworkin M (ed) The prokaryotes, an evolving electronic resource for the microbial community. Springer, New York

    Google Scholar 

  • Wächtershäuser G (2003) From pre-cells to Eukarya – a tale of two lipids. Mol Microbiol 47:13–22

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to bacteria, archaea and eukarya. Phil Trans R Soc B London 361:1787–1808

    Article  Google Scholar 

  • Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602

    Article  PubMed  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper and Row, New York

    Google Scholar 

  • Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1982) Archaebacteria and cellular origins: an overview. Zbl Bakt Hyg, I Abt Orig C3:1–17

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Ycas M (1955) A note on the origin of life. Proc Natl Acad Sci USA 41:714–716

    Article  PubMed  CAS  Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albarède F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Wächtershäuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Wächtershäuser, G. (2010). Chemoautotrophic Origin of Life: The Iron–Sulfur World Hypothesis. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_1

Download citation

Publish with us

Policies and ethics