A Micromechanical Model for Polycrystalline Shape Memory Alloys – Formulation and Numerical Validation

  • Rainer HeinenEmail author
  • Klaus Hackl
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)


The specific material properties of shape memory alloys are due to the formation of martensitic microstructures. In this contribution, we develop a strategy to model the material behavior based on energy considerations: we first present narrow bounds to the elastic energy obtained by lamination of the multi-well problem in the monocrystalline case. These considerations are then extended to polycrystals and compared to a convexification bound. Due to the acceptably low difference between convexification lower and lamination upper bound,we use the convexification bound to establish a micromechanical model which, on the basis of physically well motivated parameters such as elastic constants and transformation strains, is able to represent a variety of aspects of the material behavior such as pseudoelasticity, pseudoplasticity and martensite reorientation.


Elastic Constant Shape Memory Alloy Elastic Energy Material Behavior Transformation Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal. 100, 1987, 13–52.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    T. Bartel and K. Hackl, A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations, Mat. Sci. Eng. A 481, 2008 371–375.CrossRefGoogle Scholar
  3. 3.
    K. Bhattacharya, Microstructure of Martensite – Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, New York, 2003.Google Scholar
  4. 4.
    C. Bouvet, S. Calloch and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, Eur. J. Mech. A-Solids 23, 2004, 37–61.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    O.P. Bruno, F. Reitich and P.H. Leo, The overall elastic energy of polycrystalline martensitic solids, J. Mech. Phys. Solids 44, 1996, 1051–1101.CrossRefGoogle Scholar
  6. 6.
    D. Christ and S. Reese, Finite-element modelling of shape memory alloys – A comparison between small-strain and large-strain formulations, Mat. Sci. Eng. A 481, 2008, 343–346.CrossRefGoogle Scholar
  7. 7.
    B. Dacorogna, Quasiconvexification and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal. 46, 1982, 102–118.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Govindjee, K. Hackl and R. Heinen, An upper bound to the free energy of mixing by twincompatible lamination for n-variant martensitic phase transformations, Continuum Mech. Thermodyn. 18, 2007, 443–453.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Govindjee, A. Mielke and G.J. Hall, The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis, J. Mech. Phys. Solids 51, 2003, 763.CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Govindjee and C. Miehe, A mult-variant martensitic phase transformation model: Formulation and numerical implementation, Comput. Meth. Appl. Mech. Engrg. 191, 2001, 215–238.zbMATHCrossRefGoogle Scholar
  11. 11.
    S. Grabe and O.T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. Solids Struct. 45, 2008, 1876-Ű1895.zbMATHCrossRefGoogle Scholar
  12. 12.
    K. Hackl and F.D. Fischer, On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A 464, 2008, 117–132zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    K. Hackl and R. Heinen, A micromechanical model for pre-textured polycrystalline shape memory alloys including elastic anisotropy, Continuum Mech. Thermodyn. 19, 2008, 499–510.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Hackl and R. Heinen, A lamination upper bound to the free energy of n-variant polycrystalline shape memory alloys, J. Mech. Phys. Solids 56, 2008, 2832–2843.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    K. Hackl, R. Heinen, W.W. Schmahl and M. Hasan, Experimental verification of a micromechanical model for polycrystalline shape memory alloys in dependence of martensite orientation distributions, Mat. Sci. Eng. A 481, 2008, 347–350.CrossRefGoogle Scholar
  16. 16.
    R. Heinen and K. Hackl, On the calculation of energy-minimizing phase fractions in shape memory alloys, Comput. Meth. Appl. Mech. Engrg. 196, 2007, 2401–2412.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Heinen, K. Hackl, W. Windl and M. Wagner, Microstructural evolution during multiaxial deformation of pseudoelastic NiTi studied by first-principles-based micromechanical modeling, Acta Materialia 57, 2009, 3856–3867.CrossRefGoogle Scholar
  18. 18.
    D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermodynamics, Int. J. Solids Struct. 40, 2003, 827–849.zbMATHCrossRefGoogle Scholar
  19. 19.
    R. Kohn, The relaxation of a double-well energy, Continuum Mech. Thermodyn. 3, 1991, 193–236.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rat. Mech. Anal. 162, 2002, 137–177.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Continuum Mech. Thermodyn. 15, 2003, 351–382.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    C. Müller and O.T. Bruhns, A thermodynamic finite-strain model for pseudoelastic shape memory alloys, Int. J. Plasticity 22, 2006, 1658–1682.zbMATHCrossRefGoogle Scholar
  23. 23.
    M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates, Comput. Meth. Appl. Mech. Engrg. 171, 1999, 419–444.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    S. Reese and C. Christ, Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation, Int. J. Plasticity 24, 2008, 455–482.zbMATHCrossRefGoogle Scholar
  25. 25.
    P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Sittner and L. Mañosa, Elastic constants of bcc austenite and 2H orthorhombic martensite in CuA1Ni shape memory alloy. Acta Materialia 53, 2005, 3643–3661.CrossRefGoogle Scholar
  26. 26.
    V. Smyshlyaev and J. Willis, A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals, Proc. R. Soc. London A 454, 1998, 1573–1613.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    V. Smyshlyaev and J. Willis, On the relaxation of a three-well energy, Proc. R. Soc. London A 455, 1998, 779–814.MathSciNetGoogle Scholar
  28. 28.
    S. Stupkiewicz and H. Petryk, Modelling of laminated microstructures in stressinduced martensitic transformations, J. Mech. Phys. Sol. 50, 2002, 2303–2331.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    M.F.-X. Wagner and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Materialia 56, 2008, 6232–6245.CrossRefGoogle Scholar
  30. 30.
    L. Truskinovsky, About the normal growth apporximation in the dynamical theory of phasetransitions, Continuum Mech. Thermodyn. 6, 1994, 185–208.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Werkstoffkompetenzzentrum, Division Auto, ThyssenKrupp Steel AGDuisburgGermany
  2. 2.Lehrstuhl für Allgemeine MechanikRuhr-Universität BochumBochumGermany

Personalised recommendations