Application of Relaxation Methods in Materials Science: From the Macroscopic Response of Elastomers to Crystal Plasticity

  • Georg Dolzmann
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)


In this contribution we review some aspects of the mathematical analysis of fine structures in materials in three distinct systems: small deformations within the range of pseudoelasticity in shape memory materials, soft elasticity for nematic and smectic elastomers, and relaxation via formation of microstructures in single crystal plasticity.


Relaxation Method Crystal Plasticity Free Energy Density Young Measure Multiplicative Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J., Conti, S., Desimone, A. and Dolzmann, G., Relaxation of some transversally isotropic energies and applications to smectic A elastomers, Math. Models Methods Appl. Sci. 18(1), 2008, 1–20.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Adams, J. and Warner, M., The elasticity of smectic-a elastomers, Phys. Rev. E 71, 2005, 1–17.CrossRefGoogle Scholar
  3. 3.
    Albin, N., Conti, S. and Dolzmann, G., Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh A, 139, 2009, 685–708.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ball, J.M. A version of the fundamental theorem for young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, Proceedings of an NSF-CNRS Joint Seminar, Springer, 1989, pp. 207–215.Google Scholar
  5. 5.
    Ball, J.M. and James, R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100(1), 1987, 13–52.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ball, J.M. and James, R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London A 338, 1992, 389–450.zbMATHCrossRefGoogle Scholar
  7. 7.
    Ball, J.M. and Murat, F., W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58(3), 1984, 225–253.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bhattacharya, K. Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford Series on Materials Modelling, Oxford University Press, Oxford, 2003.Google Scholar
  9. 9.
    Bladon, P., Terentjev, E.M. and Warner, M., Transitions and instabilities in liquid crystal elastomers, Phys Rev E 47, 1993, R3838–R3840.CrossRefGoogle Scholar
  10. 10.
    Carstensen, C., Hackl, K. and Mielke, A., Non-convex potentials and microstructures in finitestrain plasticity, Royal Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 2002, 299–317.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chipot, M. and Kinderlehrer, D., Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 3, 1988, 237–277.MathSciNetGoogle Scholar
  12. 12.
    Conti, S., Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, P. Gumbsch (Ed.), Fraunhofer IRB, Freiburg, 2006, pp. 30–35.Google Scholar
  13. 13.
    Conti, S., Quasiconvex functions incorporating volumetric constraints are rank-one convex, J. Math. Pures Appl. (9) 90(1), 2008, 15–30.zbMATHMathSciNetGoogle Scholar
  14. 14.
    Conti, S., DeSimone, A. and Dolzmann, G., Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers, Phys. Rev. E 66, 2002, #061710.CrossRefGoogle Scholar
  15. 15.
    Conti, S., DeSimone, A. and Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids 50, 2002, 1431–1451.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Conti, S., Dolzmann, G. and Klust, C., Relaxation of a class of variational models in crystal plasticity, Royal Soc. Lond. Proc. Ser. A Math. Phys. Engrg. Sci. 465, 2009, 1735–1742.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Conti, S., Dolzmann, G. and Klust, C., work in preparation, 2009.Google Scholar
  18. 18.
    Conti, S. and Theil, F., Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal. 178(1), 2005, 125–148.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dacorogna, B., Direct Methods in the Calculus of Variations, second ed., Applied Mathematical Sciences, Vol. 78, Springer, New York, 2008.Google Scholar
  20. 20.
    Dacorogna, B. and Marcellini, P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, Vol. 37, Birkhäuser, Boston, MA, 1999.Google Scholar
  21. 21.
    DeSimone, A. and Dolzmann, G. Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Rational Mech. Anal. 161, 2002, 181–204.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dolzmann, G. and Kirchheim, B., Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris 336(5), 2003, 441–446.zbMATHMathSciNetGoogle Scholar
  23. 23.
    Dolzmann, G. and Müller, S., Microstructures with finite surface energy: The two-well problem, Arch. Ration. Mech. Anal. 132(2), 1995, 101–141.zbMATHCrossRefGoogle Scholar
  24. 24.
    Kirchheim, B., Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprints, Max Planck Institute for Mathematics in the Sciences, Leipzig, 12, 1998.Google Scholar
  25. 25.
    Kirchheim, B., Rigidity and Geometry of Microstructures, Lecture Notes 16, Max Planck Institute for Mathematics in the Sciences, Leipzig, 2003.Google Scholar
  26. 26.
    Kohn, R.V. and Strang, D., Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39, 1986, 113–137, 139–182, 353–377.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kundler, I. and Finkelmann, H., Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromol. Rapid Commun. 16, 1995, 679–686.CrossRefGoogle Scholar
  28. 28.
    Müller, S., Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math., Vol. 1713, Springer, Berlin, 1999, pp. 85–210.Google Scholar
  29. 29.
    Müller, S. and Šverák, V., Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1(4), 1999, 393–422.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ortiz, M. and Repetto, E.A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47(2), 1999, 397–462.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Šilhavý, M., Ideally soft nematic elastomers, Netw. Heterog. Media 2, 2007, 279–311.zbMATHMathSciNetGoogle Scholar
  32. 32.
    Tartar, L., The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 111, Reidel, 1983, pp. 263–285.Google Scholar
  33. 33.
    Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Royal Soc. Edinburgh Sect. A 115, 1990, 193–230.zbMATHMathSciNetGoogle Scholar
  34. 34.
    Verwey, G.C., Warner, M. and Terentjev, E.M., Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II France 6, 1996, 1273–1290.CrossRefGoogle Scholar
  35. 35.
    Warner, M. and Terentjev, E.M., Liquid Crystal Elastomers, International Series of Monographs on Physics, Vol. 120, Oxford University Press, 2003.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Georg Dolzmann
    • 1
  1. 1.NWF-I Mathematik, Universität RegensburgRegensburgGermany

Personalised recommendations