A Phase Field Approach to Wetting and Contact Angle Hysteresis Phenomena

  • Antonio DeSimoneEmail author
  • Livio Fedeli
  • Alessandro Turco
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)


We discuss a phase field model for the numerical simulation of contact angle hysteresis phenomena in wetting. The performance of the model is assessed by comparing its predictions with experimental data on the critical size of drops that can stick on a vertical glass plate.


Contact Angle Contact Line Critical Volume Contact Angle Hysteresis Recede Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena, Springer, 2004.zbMATHGoogle Scholar
  2. 2.
    E.B. Dussan, On the ability of drops or bubbles to stick to non-horizontal surfaces of solids, J. Fluid Mech. 151, 1985, 1–20.zbMATHCrossRefGoogle Scholar
  3. 3.
    P. Seppecher, Moving contact lines in the Cahn-Hilliard theory, Int. J. Engrg. Sci. 34, 1996, 977–992.zbMATHCrossRefGoogle Scholar
  4. 4.
    H. Garcke, B. Nestler and B. Stoth, A multi-phase-field concept: Numerical simulations of moving phase boundaries and multiple junctions, SIAM J. Appl. Math. 60, 1999, 295–315.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Finn, Equilibrium Capillary Surfaces, Springer, 1986.zbMATHGoogle Scholar
  6. 6.
    L. Modica, Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 1987, 497.Google Scholar
  7. 7.
    G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis, forthcoming, 2009.Google Scholar
  8. 8.
    A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis, Networks and Heterogeneous Media 2, 2007, 211–225.zbMATHMathSciNetGoogle Scholar
  9. 9.
    W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25, 2004, 1674.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: Numerical experiment based on a phase field model, ESAIM: M2AN, 2009.Google Scholar
  11. 11.
    A. Turco, Variational techniques in the numerical simulation of molecular dynamics trajectories and of wetting on rough surfaces, PhD Thesis, 2008,
  12. 12.
    A. Carre and M.E.R. Shanahan, Drop motion on an inclined plane and evaluation of hydrophobic treatments to glass, J. Adhesion 49, 1995, 177–185.CrossRefGoogle Scholar
  13. 13.
    G. Alberti and A. DeSimone, Wetting of rough surfaces: A homogenization approach, Proc. R. Soc. A 461, 2005, 79–97.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Antonio DeSimone
    • 1
    Email author
  • Livio Fedeli
    • 1
  • Alessandro Turco
    • 1
  1. 1.SISSA – International School for Advanced StudiesTriesteItaly

Personalised recommendations