Skip to main content

Polyconvex Energies for Trigonal, Tetragonal and Cubic Symmetry Groups

  • Conference paper
  • First Online:

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

In large strain elasticity the existence of minimizers is guaranteed if the variational functional to be minimized is sequentially weakly lower semicontinuous (s.w.l.s.) and coercive. Therefore, for the description of hyperelastic materials polyconvex functions which are always s.w.l.s. should be preferably used. A variety of isotropic and anisotropic polyconvex energies, in particular for the triclinic, monoclinic, rhombic and transversely isotropic symmetry groups, already exist. In this contribution we propose a new approach for the description of trigonal, tetragonal and cubic hyperelastic materials in the framework of polyconvexity. The anisotropy of the material is described by invariants in terms of the right Cauchy’Green tensor and a specific fourth-order structural tensor. In order to show the adaptability of the introduced polyconvex energies for the approximation of real anisotropic material behavior we focus on the fitting of a trigonal fourth-order tangent moduli near the reference state to experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Archive for Rational Mechanics and Analysis63, 1977, 337–403.

    Article  MATH  Google Scholar 

  2. Betten, J.: Integrity basis for a second-order and a fourth-order tensor. International Journal of Mathematics and Mathematical Sciences5(1), 1982, 87–96.

    Article  MATH  MathSciNet  Google Scholar 

  3. Betten, J.: Recent advances in applications of tensor functions in solid mechanics. Advances in Mechanics14(1), 1991, 79–109.

    MathSciNet  Google Scholar 

  4. Betten, J.: Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien. Zeitschrift für Angewandte Mathematik und Mechanik78(8), 1998, 507–521.

    Article  MATH  MathSciNet  Google Scholar 

  5. Betten, J. and Helisch, W.: Irreduzible Invarianten eines Tensors vierter Stufe. Zeitschrift für Angewandte Mathematik und Mechanik72(1), 1992, 45–57.

    MATH  MathSciNet  Google Scholar 

  6. Betten, J. and Helisch, W.: Tensorgeneratoren bei Systemen von Tensoren zweiter und vierter Stufe. Zeitschrift für Angewandte Mathematik und Mechanik76(2), 1996, 87–92.

    MATH  MathSciNet  Google Scholar 

  7. Boehler, J.P.: Lois de comportement anisotrope des milieux continus. Journal de Mécanique17(2), 1978, 153–190.

    MATH  MathSciNet  Google Scholar 

  8. Boehler, J.P.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik59, 1979, 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  9. Boehler, J.P.: Introduction to the invariant formulation of anisotropic constitutive equations. In: J.P. Boehler (Ed.), Applications of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, Vol. 292, Springer, 1987, pp. 13–30.

    Google Scholar 

  10. Ebbing, V., Schröder, J. and Neff, P.: On the construction of anisotropic polyconex energy densities. In: Proceedings in Applied Mathematics and Mechanics, Vol. 7, 2007, pp. 4060,009–4060,010.

    Article  Google Scholar 

  11. Ebbing, V., Schröder, J. and Neff, P.: Polyconvex models for arbitrary anisotropic materials. In: Proceedings in Applied Mathematics and Mechanics, Vol. 8, 2008, pp. 10,415–10,416.

    Article  Google Scholar 

  12. Ebbing, V., Schröder, J. and Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Archive of Applied Mechanics79, 2009, 651–657.

    Article  Google Scholar 

  13. Jarić, J.P., Kuzmanović, D. and Golubović, Z.: On tensors of elasticity. Theoretical and Applied Mechanics35(1–3), 2008, 119–136.

    MATH  MathSciNet  Google Scholar 

  14. Kambouchev, N., Fernandez, J. and Radovitzky, R.: A polyconvex model for materials with cubic symmetry. Modelling and Simulation in Material Science and Engineering15, 2007, 451–467.

    Article  Google Scholar 

  15. Liu, I.S.: On representations of anisotropic invariants. International Journal of Engineering Science20, 1982, 1099–1109.

    Article  MATH  MathSciNet  Google Scholar 

  16. Neumann, F.E.: Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, Teubner, 1885.

    Google Scholar 

  17. Schröder, J. and Neff, P.: On the construction of polyconvex anisotropic free energy functions. In: C. Miehe (Ed.), Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, Kluwer Academic Publishers, 2001, pp. 171–180.

    Google Scholar 

  18. Schröder, J. and Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. International Journal of Solids and Structures40, 2003, 401–445.

    Article  MATH  MathSciNet  Google Scholar 

  19. Schröder, J., Neff, P. and Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids56(12), 2008, 3486–3506.

    Article  MATH  MathSciNet  Google Scholar 

  20. Schwefel, H.P.: Evolution and Optimum Seeking, Wiley, 1996.

    Google Scholar 

  21. Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties, The MIT Press, Massachusetts Institute of Technology, 1971.

    Google Scholar 

  22. Smith, G.F.: On a fundamental error in two papers of C.-C. Wang “On representations for isotropic functions, Parts I and II”. Archive for Rational Mechanics and Analysis36, 1970, 161–165.

    Article  MATH  MathSciNet  Google Scholar 

  23. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science9, 1971, 899–916.

    Article  MATH  MathSciNet  Google Scholar 

  24. Spencer, A.J.M.: Theory of invariants. In: A. Eringen (Ed.), Continuum Physics, Vol. 1, Academic Press, 1971, pp. 239–353.

    Google Scholar 

  25. Wang, C.C.: On representations for isotropic functions. Part I. Isotropic functions of symmetric tensors and vectors. Archive for Rational Mechanics and Analysis33, 1969, 249–267.

    Article  MathSciNet  Google Scholar 

  26. Wang, C.C.: On representations for isotropic functions. Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Archive for Rational Mechanics and Analysis33, 1969, 268–287.

    Article  MathSciNet  Google Scholar 

  27. Wang, C.C.: A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Part 1. Scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis36, 1970, 166–197.

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, C.C.: A new representation theorem for isotropic functions: An answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis36, 1970, 198–223.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, C.C.: Corrigendum to my recent papers on “Representations for isotropic functions”. Archive for Rational Mechanics and Analysis43, 1971, 392–395.

    Article  MathSciNet  Google Scholar 

  30. Xiao, H.: On isotropic extension of anisotropic tensor functions. Zeitschrift für Angewandte Mathematik und Mechanik76(4), 1996, 205–214.

    MATH  Google Scholar 

  31. Zhang, J. and Rychlewski, J.: Structural tensors for anisotropic solids. Archives of Mechanics42, 1990, 267–277.

    MATH  MathSciNet  Google Scholar 

  32. Zheng, Q.S.: Theory of representations for tensor functions – A unified invariant approach to constitutive equations. Applied Mechanics Reviews47, 1994, 545–587.

    Article  Google Scholar 

  33. Zheng, Q.S. and Spencer, A.J.M.: Tensors which characterize anisotropies. International Journal of Engineering Science31(5), 1993, 679–693.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Schröder, J., Neff, P., Ebbing, V. (2010). Polyconvex Energies for Trigonal, Tetragonal and Cubic Symmetry Groups. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics