Phase-Field Modeling of Nonlinear Material Behavior

  • Y.-P. PellegriniEmail author
  • C. Denoual
  • L. Truskinovsky
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)


Materials that undergo internal transformations are usually described in solid mechanics by multi-well energy functions that account for both elastic and transformational behavior. In order to separate the two effects, physicists use instead phase-field-type theories where conventional linear elastic strain is quadratically coupled to an additional field that describes the evolution of the reference state and solely accounts for nonlinearity. In this paper we propose a systematic method allowing one to split the nonconvex energy into harmonic and nonharmonic parts and to convert a nonconvex mechanical problem into a partially linearized phasefield problem. The main ideas are illustrated using the simplest framework of the Peierls’Nabarro dislocation model.


Screw Dislocation Displacement Discontinuity Dislocation Nucleation Slip Region Bulk Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpio, A. and Bonilla, L.L.: Discrete models for dislocations and their motion in cubic crystals. Phys. Rev. B 12, 2005, 1087–1097.MathSciNetGoogle Scholar
  2. 2.
    Carstensen, C., Hackl, K. and Mielke, A.: Nonconvex potentials and microstructures in finitestrain plasticity. Proc. R. Soc. London A 458, 2002, 299–317.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Choksi, R., Del Piero, G., Fonseca, I. and Owen, D.R.: Structural deformations as energy minimizers in models of fracture and hysteresis. Math. Mech. Solids 4, 1999, 321–356.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Conti, S. and Zanzotto, G.: A variational model for reconstructive phase transformations, and their relation to dislocations and plasticity. Arch. Rational Mech. Anal. 173, 2004, 69–88.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Christian, J.W. and Vitek, V.: Dislocations and stacking faults. Rep. Prog. Phys. 33, 1970, 307–411.CrossRefGoogle Scholar
  6. 6.
    Del Piero, G. and Truskinovsky L.: Macro and micro-cracking in 1D elasticity. Int. J. Solids Struct. 38, 2001, 1135–1148.zbMATHCrossRefGoogle Scholar
  7. 7.
    Denoual, C.: Dynamic dislocation modeling by combining Peierls–Nabarro and Galerkin methods. Phys. Rev. B 70, 2004, 024106.CrossRefGoogle Scholar
  8. 8.
    Denoual, C.: Modeling dislocations by coupling Peierls–Nabarro and element-free Galerkin methods. Comput. Meth. Appl. Mech. Engrg. 196, 2007, 1915–1923.zbMATHCrossRefGoogle Scholar
  9. 9.
    Ericksen, J.: Equilibrium of bars. J. Elast. 5, 1975, 191–202.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eshelby, J.D.: Uniformly moving dislocations. Proc. Phys. Soc. London A 62, 1949, 307–314.CrossRefGoogle Scholar
  11. 11.
    Hakim, V. and Karma, A.: Crack path prediction in anisotropic brittle materials. Phys. Rev. Lett. 95, 2005, 235501.CrossRefGoogle Scholar
  12. 12.
    Hirth, J.P. and Lothe J.: Theory of Dislocations, 2nd edn. Wiley & Sons, New York, 1982.Google Scholar
  13. 13.
    Miller, R., Phillips, R., Beltz, G. and Ortiz, M.: A non-local formulation of the Peierls dislocation model. J. Mech. Phys. Solids 46, 1998, 1845–1867.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhof, Dordrecht, 1987.Google Scholar
  15. 15.
    Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 1947, 256–272.CrossRefGoogle Scholar
  16. 16.
    Ortiz, M. and Phillips, R.: Nanomechanics of defects in solids. Adv. Appl. Mech. 36, 1999, 1–79.CrossRefGoogle Scholar
  17. 17.
    Pellegrini, Y.-P., Denoual C. and Truskinovsky, L., in preparation.Google Scholar
  18. 18.
    Ponte Castañeda, P. and Suquet, P.: Nonlinear composites. Adv. Appl. Mech. 34, 2002, 171–302.CrossRefGoogle Scholar
  19. 19.
    Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 1992, 239–271.CrossRefGoogle Scholar
  20. 20.
    Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton, 1997.zbMATHGoogle Scholar
  21. 21.
    Rosakis, P.: Supersonic dislocation from an augmented Peierls model. Phys. Rev. Lett. 86, 2001, 95–98.CrossRefGoogle Scholar
  22. 22.
    Stillinger, F.H. and Weber, T.A.: Packing structures and transitions in liquids and solids. Science 225, 1984, 983–989.CrossRefGoogle Scholar
  23. 23.
    Sun, Y., Beltz, G.E. and Rice, J.R.: Estimates from atomic models of tension-shear coupling in dislocation nucleation from a crack tip. Mat. Sci. Eng. A 170, 1993, 69–85.CrossRefGoogle Scholar
  24. 24.
    Truskinovsky, L.: Kinks versus shocks. In: Fosdick, R., Dunn, E. and Slemrod, M. (Eds.), Shock Induced Transitions and Phase Structures in General Media, IMA, Vol. 52, Springer-Verlag, 1993, pp. 185–229.Google Scholar
  25. 25.
    Truskinovsky, L.: Fracture as a phase transformation. In: Batra, R. and Beatty, M. (Eds.), Contemporary Research in Mechanics and Mathematics of Materials, CIMNE, Barcelona, 1996, pp. 322–332.Google Scholar
  26. 26.
    Wang, Y. and Khachaturyan, A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45, 1997, 759–773.CrossRefGoogle Scholar
  27. 27.
    Woodward, C.: First-principles simulations of dislocation cores, Mat. Sci. Engrg. A 400–401, 2005, 59–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.Laboratoire de Mécanique des SolidesCNRS UMR-7649, École PolytechniquePalaiseau CedexFrance

Personalised recommendations