Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

Materials that undergo internal transformations are usually described in solid mechanics by multi-well energy functions that account for both elastic and transformational behavior. In order to separate the two effects, physicists use instead phase-field-type theories where conventional linear elastic strain is quadratically coupled to an additional field that describes the evolution of the reference state and solely accounts for nonlinearity. In this paper we propose a systematic method allowing one to split the nonconvex energy into harmonic and nonharmonic parts and to convert a nonconvex mechanical problem into a partially linearized phasefield problem. The main ideas are illustrated using the simplest framework of the Peierls’Nabarro dislocation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpio, A. and Bonilla, L.L.: Discrete models for dislocations and their motion in cubic crystals. Phys. Rev. B 12, 2005, 1087–1097.

    MathSciNet  Google Scholar 

  2. Carstensen, C., Hackl, K. and Mielke, A.: Nonconvex potentials and microstructures in finitestrain plasticity. Proc. R. Soc. London A 458, 2002, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  3. Choksi, R., Del Piero, G., Fonseca, I. and Owen, D.R.: Structural deformations as energy minimizers in models of fracture and hysteresis. Math. Mech. Solids 4, 1999, 321–356.

    Article  MATH  MathSciNet  Google Scholar 

  4. Conti, S. and Zanzotto, G.: A variational model for reconstructive phase transformations, and their relation to dislocations and plasticity. Arch. Rational Mech. Anal. 173, 2004, 69–88.

    Article  MATH  MathSciNet  Google Scholar 

  5. Christian, J.W. and Vitek, V.: Dislocations and stacking faults. Rep. Prog. Phys. 33, 1970, 307–411.

    Article  Google Scholar 

  6. Del Piero, G. and Truskinovsky L.: Macro and micro-cracking in 1D elasticity. Int. J. Solids Struct. 38, 2001, 1135–1148.

    Article  MATH  Google Scholar 

  7. Denoual, C.: Dynamic dislocation modeling by combining Peierls–Nabarro and Galerkin methods. Phys. Rev. B 70, 2004, 024106.

    Article  Google Scholar 

  8. Denoual, C.: Modeling dislocations by coupling Peierls–Nabarro and element-free Galerkin methods. Comput. Meth. Appl. Mech. Engrg. 196, 2007, 1915–1923.

    Article  MATH  Google Scholar 

  9. Ericksen, J.: Equilibrium of bars. J. Elast. 5, 1975, 191–202.

    Article  MATH  MathSciNet  Google Scholar 

  10. Eshelby, J.D.: Uniformly moving dislocations. Proc. Phys. Soc. London A 62, 1949, 307–314.

    Article  Google Scholar 

  11. Hakim, V. and Karma, A.: Crack path prediction in anisotropic brittle materials. Phys. Rev. Lett. 95, 2005, 235501.

    Article  Google Scholar 

  12. Hirth, J.P. and Lothe J.: Theory of Dislocations, 2nd edn. Wiley & Sons, New York, 1982.

    Google Scholar 

  13. Miller, R., Phillips, R., Beltz, G. and Ortiz, M.: A non-local formulation of the Peierls dislocation model. J. Mech. Phys. Solids 46, 1998, 1845–1867.

    Article  MATH  MathSciNet  Google Scholar 

  14. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhof, Dordrecht, 1987.

    Google Scholar 

  15. Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 1947, 256–272.

    Article  Google Scholar 

  16. Ortiz, M. and Phillips, R.: Nanomechanics of defects in solids. Adv. Appl. Mech. 36, 1999, 1–79.

    Article  Google Scholar 

  17. Pellegrini, Y.-P., Denoual C. and Truskinovsky, L., in preparation.

    Google Scholar 

  18. Ponte Castañeda, P. and Suquet, P.: Nonlinear composites. Adv. Appl. Mech. 34, 2002, 171–302.

    Article  Google Scholar 

  19. Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 1992, 239–271.

    Article  Google Scholar 

  20. Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton, 1997.

    MATH  Google Scholar 

  21. Rosakis, P.: Supersonic dislocation from an augmented Peierls model. Phys. Rev. Lett. 86, 2001, 95–98.

    Article  Google Scholar 

  22. Stillinger, F.H. and Weber, T.A.: Packing structures and transitions in liquids and solids. Science 225, 1984, 983–989.

    Article  Google Scholar 

  23. Sun, Y., Beltz, G.E. and Rice, J.R.: Estimates from atomic models of tension-shear coupling in dislocation nucleation from a crack tip. Mat. Sci. Eng. A 170, 1993, 69–85.

    Article  Google Scholar 

  24. Truskinovsky, L.: Kinks versus shocks. In: Fosdick, R., Dunn, E. and Slemrod, M. (Eds.), Shock Induced Transitions and Phase Structures in General Media, IMA, Vol. 52, Springer-Verlag, 1993, pp. 185–229.

    Google Scholar 

  25. Truskinovsky, L.: Fracture as a phase transformation. In: Batra, R. and Beatty, M. (Eds.), Contemporary Research in Mechanics and Mathematics of Materials, CIMNE, Barcelona, 1996, pp. 322–332.

    Google Scholar 

  26. Wang, Y. and Khachaturyan, A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45, 1997, 759–773.

    Article  Google Scholar 

  27. Woodward, C.: First-principles simulations of dislocation cores, Mat. Sci. Engrg. A 400–401, 2005, 59–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-P. Pellegrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pellegrini, YP., Denoual, C., Truskinovsky, L. (2010). Phase-Field Modeling of Nonlinear Material Behavior. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics