Skip to main content

On the Implementation of Variational Constitutive Updates at Finite Strains

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

In this paper an efficient, variationally consistent, algorithmic formulation for rate-independent dissipative solids at finite strain is presented. Focusing on finite strain plasticity theory and adopting the formalism of standard dissipative solids, the considered class of constitutive models can be defined by means of only two potentials being the Helmholtz energy and the yield function (or equivalently, a dissipation functional). More importantly, by assuming associative evolution equations, these potentials allow to recast finite strain plasticity into an equivalent, variationally consistent minimization problem, cf. [1’4]. Based on this physically sound theoretical approach, a novel numerical implementation is discussed. Analogously to the theoretical part, it is variationally consistent, i.e., all unknown variables follow naturally from minimizing the energy of the respective system. Extending previously published works on such methods, the advocated numerical scheme does not rely on any material symmetry regarding the elastic and the plastic response and covers isotropic, kinematic and combined hardening, cf. [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates, Computer Methods in Applied Mechanics and Engineering 171, 1999, 419–444.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finitestrain plasticity, Proc. R. Soc. London A 458, 2002, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Miehe, Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, International Journal for Numerical Methods in Engineering 55, 2002, 1285–1322.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Mosler, On the numerical modeling of localized material failure at finite strains by means of variational mesh adaption and cohesive elements, Habilitation, Ruhr University Bochum, Germany, 2007.

    Google Scholar 

  5. J. Mosler and O.T. Bruhns, On the implementation of rate-independent standard dissipative solids at finite strain - Variational constitutive updates, Computer Methods in Applied Mechanics and Engineering, 2009, in press.

    Google Scholar 

  6. J. Mosler and O.T. Bruhns, Towards variational constitutive updates for non-associative plasticity models at finite strain: Models based on a volumetric-deviatoric split, International Journal for Solids and Structures 46(7–8), 2009, 1676–1684.

    Article  MathSciNet  Google Scholar 

  7. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63, 1978, 337–403.

    Article  Google Scholar 

  8. M. Ortiz and E.A. Repetto, Nonconvex energy minimisation and dislocation in ductile single crystals, J. Mech. Phys. Solids 47, 1999, 397–462.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Radovitzky and M. Ortiz, Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Computer Methods in Applied Mechanics and Engineering 172, 1999, 203–240.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Thoutireddy and M. Ortiz, A variational r-adaption and shape-optimization method for finite-deformation elasticity, International Journal for Numerical Methods in Engineering 61, 2004, 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Mosler and M. Ortiz, On the numerical implementation of variational arbitrary Lagrangian-Eulerian (VALE) formulations, International Journal for Numerical Methods in Engineering 67, 2006, 1272–1289.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Comi, A. Corigliano and G. Maier, Extremum properties of finite-step solutions in elasto-plasticity with nonlinear hardening, International Journal for Solids and Structures 29, 1991, 965–981.

    Article  MathSciNet  Google Scholar 

  13. C. Comi and U. Perego, A unified approach for variationally consistent finite elements in elastoplasticity, Computer Methods in Applied Mechanics and Engineering 121, 1995, 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Ortiz and A. Pandolfi, A variational Cam-clay theory of plasticity, Computer Methods in Applied Mechanics and Engineering 193, 2004, 2645–2666.

    Article  MATH  Google Scholar 

  15. Q. Yang, L. Stainier and M. Ortiz, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, Journal of the Mechanics and Physics of Solids 33, 2005, 2863–2885.

    Google Scholar 

  16. E. Fancello, J.-P. Ponthot and L. Stainier, A variational formulation of constitutive models and updates in non-linear finite viscoelasticity, International Journal for Numerical Methods in Engineering 65(11), 2006, 1831–1864.

    Article  MATH  Google Scholar 

  17. K. Weinberg, A. Mota and M. Ortiz, A variational constitutive model for porous metal plasticity, Computational Mechanics 37, 2006, 142–152.

    Article  MATH  Google Scholar 

  18. T. El Sayed, A. Mota, F. Fraternali and M. Ortiz, A variational constitutive model for soft biological tissue, Journal of Biomechanics 41, 2008, 1458–1466.

    Article  Google Scholar 

  19. E. Fancello, J.M. Vassoler and L. Stainier, A variational constitutive update algorithm for a set of isotropic hyperelastic-viscoplastic material models, Computer Methods in Applied Mechanics and Engineering 197, 2008, 4132–4148.

    Article  Google Scholar 

  20. E.H. Lee, Elastic-plastic deformation at finite strains, Journal of Applied Mechanics 36, 1969, 1–6.

    MATH  Google Scholar 

  21. P.M. Naghdi, A critical review of the state of finite plasticity, Zeitschrift für Angewandte Mathematik und Physik 41, 1990, 315–394.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Nemat-Nasser, Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials, Cambridge University Press, 2004.

    MATH  Google Scholar 

  23. H. Xiao, O.T. Bruhns and A. Meyers, Elastoplasticity beyond small deformations, Acta Mechanica 182, 2006, 31–111.

    Article  MATH  Google Scholar 

  24. B. Halphen and Q.S. Nguyen, Sur les matériaux standards généralisés, J. Méchanique 14, 1975, 39–63.

    MATH  Google Scholar 

  25. J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Springer, New York, 1998.

    MATH  Google Scholar 

  26. J.C. Simo, Numerical analysis of classical plasticity, in P.G. Ciarlet and J.J. Lions (Eds.), Handbook for Numerical Analysis, Vol. IV, Elsevier, Amsterdam, 1998.

    Google Scholar 

  27. C. Geiger and C. Kanzow, Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben, Springer, 1999.

    MATH  Google Scholar 

  28. C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002.

    MATH  Google Scholar 

  29. F. Cazacu and O. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, International Journal of Plasticity 20, 2004, 2027–2045.

    Article  MATH  Google Scholar 

  30. J.C. Simo and R.L. Taylor, Quasi-incompressible finite elemente elasticity in principal stretches. Continuum basis and numerical algorithms, Computer Methods in Applied Mechanics and Engineering 85, 1991, 273–310.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Nebebe, J. Bohlen, D. Steglich and D. Letzig, Mechanical characterization of Mg alloys and model parameter identification for sheet forming simulations, in Esaform, 2009, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mosler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mosler, J., Bruhns, O.T. (2010). On the Implementation of Variational Constitutive Updates at Finite Strains. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics