Advertisement

Existence Theory for Finite-Strain Crystal Plasticity with Gradient Regularization

  • Alexander MielkeEmail author
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)

Abstract

We provide a global existence result for the time-continuous elastoplasticity problem using the energetic formulation. The deformation gradient is decomposed multiplicatively into an elastic part and the plastic tensor P, which is driven by the plastic slip strain rates \(\dot{p}\) j. We allow for self-hardening as well as crosshardening. The strain gradients ∇pj and ∇P are used to regularize the problem, thus introducing a length scale and preventing the formation of microstructure.

Keywords

Slip System Strain Gradient Lower Semicontinuity Existence Theory Multiplicative Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Engrg. Mech 128(11), 2002, 1119–1149.Google Scholar
  2. 2.
    J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal 63(4), 1976, 337–403.CrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Bartels, C. Carstensen, K. Hackl and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg 193, 2004, 5143–5175.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Conti, G. Dolzmann and C. Klust. Relaxation of a class of variational models in crystal plasticity. Proc. R. Soc. Lond. Ser. A 465(2106), 2009, 1735–1742.zbMATHMathSciNetGoogle Scholar
  5. 5.
    C. Carstensen, K. Hackl and A. Mielke. Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London Ser. A 458, 2002, 299–317.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Conti, P. Hauret and M. Ortiz. Concurrent multiscale computing of deformation microstructure by relaxation and local enrichment with application to single-crystal plasticity. Multiscale Modeling and Simulation 6, 2007, 135–157.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Conti and M. Ortiz. Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal 176(1), 2005, 103–147.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Conti and F. Theil. Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal 178, 2005, 125–148.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    O.W. Dillon and J. Kratochvil. A strain gradient theory of plasticity. Int. J. Solids Structures 6(12), 1970, 1513–1533.zbMATHCrossRefGoogle Scholar
  10. 10.
    N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Adv. Appl. Mech 33, 1997, 295–361.CrossRefGoogle Scholar
  11. 11.
    G. Francfort and A. Mielke. Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math 595, 2006, 55–91.zbMATHMathSciNetGoogle Scholar
  12. 12.
    E. Gürses, A. Mainik, C. Miehe and A. Mielke. Analytical and numerical methods for finitestrain elastoplasticity. In R. Helmig, A. Mielke and B. Wohlmuth (Eds.), Multifield Problems in Solid and Fluid Mechanics, Lecture Notes in Applied and Computational Mechanics, Vol. 28, Springer-Verlag, Berlin, 2006, pp. 443–481.CrossRefGoogle Scholar
  13. 13.
    M.E. Gurtin. On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48(5), 2000, 989–1036.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M.E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 2002, 5–32.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    K. Hackl. Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45(5), 1997, 667–688.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Hackl, A. Mielke and D. Mittenhuber. Dissipation distances in multiplicative elastoplasticity. In W. Wendland and M. Efendiev (Eds.), Analysis and Simulation of Multifield Problems, Springer-Verlag, 2003, pp. 87–100.Google Scholar
  17. 17.
    E. Lee. Elastic-plastic deformation at finite strains. J. Appl. Mech 36, 1969, 1–6.zbMATHGoogle Scholar
  18. 18.
    A. Mainik and A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci 19(3), 2009, 221–248.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein and P.J. Holmes (Eds.), Geometry, Dynamics, and Mechanics, Springer-Verlag, New York, 2002, pp. 61–90.CrossRefGoogle Scholar
  20. 20.
    A. Mielke. Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn 15, 2003, 351–382.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Mielke. Evolution in rate-independent systems. In C. Dafermos and E. Feireisl (Eds), Handbook of Differential Equations, Evolutionary Equations, Vol. 2, Elsevier, Amsterdam, 2005, pp. 461–559.CrossRefGoogle Scholar
  22. 22.
    A. Mielke, T. Roubíček and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Eqns 31, 2008, 387–416.zbMATHCrossRefGoogle Scholar
  23. 23.
    H.-B. Mühlhaus and E.C. Aifantis. A variational principle for gradient plasticity. Int. J. Solids Structures 28(7), 1991, 845–857.zbMATHCrossRefGoogle Scholar
  24. 24.
    P. Neff. Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. Quart. Appl. Math 63(1), 2005, 88–116.zbMATHMathSciNetGoogle Scholar
  25. 25.
    P. Neff and C. Wieners. Comparison of models for finite plasticity: A numerical study. Comput. Vis. Sci 6(1), 2003, 23–35.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Ortiz and E. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 1999, 397–462.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Weierstraß-Institut für Angewandte Analysis und StochastikBerlinGermany

Personalised recommendations