Advertisement

Computational Homogenization of Confined Frictional Granular Matter

  • H. A. MeierEmail author
  • P. Steinmann
  • E. Kuhl
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)

Abstract

Multiscale modeling and computation of confined granular media opens a novel way of simulating and understanding the complicated behavior of granular structures. Phenomenological continuum approaches are often not capable of reproducing distinguishing features of granular media, like, e.g., the breaking and forming of particle contacts. Alternatively, a multiscale homogenization procedure, based on a discrete element method, allows to capture such distinguishing features. The present manuscript deals with the variationally based computational homogenization and simulation of granular media, whereby the macroscopic impact of inter-particle friction defines the overall focal point. To bridge the gap between both scales, we apply the concept of a representative volume element, essentially linking both scales through variational considerations. As the beneficial outcome of the variational approach, the Piola stress is derived from the overall macroscopic energy density.

Keywords

Granular Medium Shear Component Tangential Contact Granular Assembly Simple Shear Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comi, C. and Perego, U., A unified approach for variationally consistent finite elements in elastoplasticity. Comput. Meth. Appl. Mech. Eng 121, 1995, 323–344.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cundall, P.A. and Strack, O.D.L., The distinct element method as a tool for research in granular media. Tech. Rep., Report to the National Science Foundation Concerning NSF Grant ENG76-20711, Parts I, II, 1978.Google Scholar
  3. 3.
    Cundall, P.A. and Strack, O.D.L., A discrete numerical model for granular assemblies. Géotechnique 29(1), 1979, 47–65.CrossRefGoogle Scholar
  4. 4.
    Duran, J., Sands, Powders, and Grains. Springer, 1999.Google Scholar
  5. 5.
    Meier, H.A., Kuhl, E. and Steinmann, P., A note on the generation of periodic granular microstructures based on grain size distributions. Int. J. Numer. Anal. Meth. Geomech 32(5), 2008, 509–522.CrossRefGoogle Scholar
  6. 6.
    Meier, H.A., Steinmann, P. and Kuhl, E., Towards multiscale computation of confined granular media – Contact forces, stresses and tangent operators. Tech. Mech 28, 2008, 32–42.Google Scholar
  7. 7.
    Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Meth. Eng 55(11), 2002, 1285–1322.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Miehe, C., Schotte, J. and Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solid 50(10), 2002, 2123–2167.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mindlin, D., Compliance of elastic bodies in contact. ASME J. Appl. Mech 16(3), 1949, 259–268.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ortiz, M. and Pandolfi, A., A variational Cam-clay theory of plasticity. Comput. Meth. Appl. Mech. Eng 193, 2004, 2645–2666.zbMATHCrossRefGoogle Scholar
  11. 11.
    Ortiz, M. and Stainier, L., The variational formulation of viscoplastic constitutive updates. Comput. Meth. Appl. Mech. Eng 171, 1999, 419–444.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schröder, J., Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Habilitation, Bericht Nr. I-7 des Instituts für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart, 2000.Google Scholar
  13. 13.
    Simo, J.C. and Hughes, T.J.R., Computational Inelasticity Springer-Verlag, 2000.Google Scholar
  14. 14.
    Taylor, G.I., Plastic strain in metals. J. Inst. Met 62, 1938, 307–324.Google Scholar
  15. 15.
    Vu-Quoc, L. and Zhang, X., An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations. Mech. Mater 31, 1999, 235–269.CrossRefGoogle Scholar
  16. 16.
    Vu-Quoc, L., Zhang, X. and Walton, O.R., A 3-d discrete-element method for dry granular flows of ellipsoidal particles. Mech. Mater 31, 2000, 483–528.Google Scholar
  17. 17.
    Walton, O.R., Numerical simulation of inclined chute flows of monodisperse inelastic, frictional spheres. Mech. Mater 16, 1993, 239–247.CrossRefGoogle Scholar
  18. 18.
    Walton, O.R. and Braun, R.L., Viscosity granular-temperature and stress calculations for shearing assemblies of inelastic frictional disks. J. Rheol 30, 1986, 949–980.CrossRefGoogle Scholar
  19. 19.
    Zohdi, T.I., Homogenization methods and multiscale modeling: Linear problems. In Encyclopedia of Computational Mechanics E. Stein, R. de Borst and T. Hughes (Eds.), Wiley, 2004.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of Mechanical EngineeringUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations