Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

  • 883 Accesses

Abstract

Within continuum dislocation theory the plastic deformation of a single crystal with one active slip system under plane-strain constrained shear is investigated. By introducing a twinning shear into the energy of the crystal, we show that in a certain range of straining the formation of deformation twins becomes energetically preferable. Energetic thresholds for the onset of twinning and of plastic flow are determined and investigated. A rough analysis qualitatively describes not only the evolving volume fractions of twins but also their number during straining. Finally, we analyze the evolution of deformation twins and of the dislocation network at non-zero dissipation. We present the corresponding stress-strain hysteresis, the evolution of the plastic distortion and the twin volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allain, K.E., Chateau, J.P. and Bouaziz, O., A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel. Mater. Sci. Eng. A 387, 2004, 143–147.

    Article  Google Scholar 

  2. Bilby, B.A., Bullough, R. and Smith, E., Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry. Proc. Royal Soc. A 231, 1955, 263–273.

    Article  MathSciNet  Google Scholar 

  3. Berdichevsky, V.L., On thermodynamics of crystal plasticity. Scripta Mater. 54, 2006, 711–716.

    Article  Google Scholar 

  4. Berdichevsky, V.L., Continuum theory of dislocations revisited. Cont. Mech. Thermodyn. 18, 2006, 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  5. Berdichevsky, V.L. and Le, K.C., Dislocation nucleation and work hardening in anti-planed constrained shear. Cont. Mech. Thermodyn. 18, 2007, 455–467.

    Article  MATH  MathSciNet  Google Scholar 

  6. Berdichevsky, V.L. and Sedov, L.I., Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. J. Appl. Math. Mech. (PMM) 31, 1967, 989–1006.

    Article  Google Scholar 

  7. Bullough, R., Deformation twinning in the diamond structure. Proc. Royal Soc. London A 241, 1957, 568–577.

    Article  MathSciNet  Google Scholar 

  8. Cahn, R.W., Twinned crystals. Adv. Phys. 3, 1954, 363–445.

    Article  Google Scholar 

  9. Christian, J.W. and Mahajan, S., Deformation twinning. Progr. in Mater. Sci. 39, 1995, 1–157.

    Article  Google Scholar 

  10. Frenkel, J. and Kontorova, T., On the theory of plastic deformation and twinning. Acad. Sci. USSR J. Phys. 1, 1939, 137–149.

    MathSciNet  Google Scholar 

  11. Gelfand, I.M. and Fomin, S.V., Calculus of Variations. Dover Publications, New York, 2000.

    MATH  Google Scholar 

  12. Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd edition. Krieger Publishing Company, Malabar, Florida, 1982.

    Google Scholar 

  13. Kochmann, D.M. and Le, K.C., Plastic deformation of bicrystals within continuum dislocation theory. J. Math. Mech. Solids, doi: 10.1177/1081286507087322, 2008.

    Google Scholar 

  14. Kochmann, D.M. and Le, K.C., Dislocaton pile-ups in bicrystals within continuum dislocation theory. Int. J. Plasticity 24, 2008, 2125–2147.

    Article  MATH  Google Scholar 

  15. Kochmann, D.M. and Le, K.C., A continuum model for initiation and evolution of deformation twinning. J. Mech. Phys. Solids 57, 2009, 987–1002.

    Article  MathSciNet  Google Scholar 

  16. Kondo, K., On the geometrical and physical foundations of the theory of yielding. In Proc. 2nd Japan Congr. Appl. Mech., 1952, pp. 41–47.

    Google Scholar 

  17. Kröner, E., Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin, 1958.

    MATH  Google Scholar 

  18. Le, K.C. and Sembiring, P., Plane constrained shear of single crystals within continuum dislocation theory. Arch. Appl. Mech. 78, 2008, 587–597.

    Article  MATH  Google Scholar 

  19. Le, K.C. and Sembiring, P., Plane-constrained shear of a single crystal strip with two active slip-systems. J. Mech. Phys. Solids 56, 2008, 2541–2554.

    Article  MATH  MathSciNet  Google Scholar 

  20. Le, K.C. and Stumpf, H., A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plasticity 12, 1996, :611–627.

    Article  MATH  Google Scholar 

  21. Le, K.C. and Stumpf, H., On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc. Royal Soc. London A 452, 1996, 359–371.

    Article  MATH  Google Scholar 

  22. Needleman, A. and Van der Giessen, E., Discrete dislocation and continuum descriptions of plastic flow. Mater. Sci. Eng. A 309–310, 2001, 1–13.

    Google Scholar 

  23. Nye, J.F., Some geometrical relations in dislocated crystals. Acta Metall. 1, 1953, 153–162.

    Article  Google Scholar 

  24. Sedov, L.I., Variational methods of constructing models of continuous media. In: H. Parkus and L.I. Sedov (Eds.), Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. Springer Verlag, Wien/New York, 1968.

    Google Scholar 

  25. Shu, J.Y., Fleck, N.A., Van der Giessen, E. and Needleman, A., Boundary layers in constrained plastic flow: Comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 2001, 1361–1395.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanh C. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Le, K.C., Kochmann, D.M. (2010). An Energetic Approach to Deformation Twinning. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics