Skip to main content

Modelling Control of Pore Number and Radii Distribution in Single-Cell Electroporation

  • Conference paper
  • First Online:
Technological Developments in Networking, Education and Automation
  • 1116 Accesses

Abstract

Electroporation EP, in which external electric field pulses create transient pores in a cell membrane, is an important technique for delivery of genes and drugs into the cell. To enable a useful level of entry of genes into cells, the pores should have sufficiently large radii, and remain open long enough without causing membrane rupture. A numerical model for a single spherical cell electroporated by application of direct and/or alternating external electric field pulses has been developed. The model is used to indicate the actual number of pores and their radii distribution developed in response to various electric field pulses, as function of time and position on the cell surface. This study briefly describes the model briefly which is then used to investigate the ability to control the number and distribution of pore radii by choice of electric field parameters. We believe this would be one of the first papers to investigate the ability to CONTROL the number and distribution (range) of pore radii (as opposed to other papers that merely report the pore number and range with varying pulse parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cemaẑar, D. Miklavĉiĉ, and G. Serŝa, “Intrinsic sensitivity of tumor cells to bleomycin as an indicator of tumor response to electrochemotherapy,” Japanese Journal of Cancer Research, vol. 89, pp. 328–333, 1998.

    Google Scholar 

  2. G. Serŝa, “Electrochemotherapy,” in Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery : Electrically Mediated Delivery of Molecules to Cells (Methods in Molecular medicine), M. J. Jaroszeski, R. Heller, and R. Gilbert, Eds. Totowa, New Jersey: Humana Press, 2000, ch. 6, pp. 119–133.

    Google Scholar 

  3. G. Serŝa, S. Novakovi´c, and D. Miklavĉiĉ, “Potentiation of bleomycin antitumor effectiveness by electrotherapy,” Cancer Letters, vol. 69, pp. 81–84, 1993.

    Article  Google Scholar 

  4. R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, , and A. I. Sokirko, “Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores,” Biochim Biophys Acta, vol. 940, p. 275287, 1988.

    Google Scholar 

  5. T. Kotnik, D. Miklavĉiĉ, and T. Slivnik, “Time course of transmembrane voltage induced by time-varying electric fields: a method for theoretical analysis and its application,” Bioelectrochemistry and Bioenergetics, vol. 45, pp. 3–16, 1998.

    Article  Google Scholar 

  6. L. M. Mir, “Therapeutic perspectives of in vivo cell electropermeabilization,” Bioelectrochemistry, vol. 53, pp. 1–10, 2000.

    Article  Google Scholar 

  7. T. Budak-Alpdogan, D. Banerjee, and J. R. Bertino, “Hematopoietic stem cell gene therapy with drug resistance genes: An update,” Cancer Gene Therapy, vol. 12, pp. 849–863, 2005.

    Article  Google Scholar 

  8. J. R. Bertino, “Transfer of drug resistance genes into hematopoietic stem cells for marrow protection,” The Oncologist, vol. 13, pp. 1036–1042, 2008.

    Article  Google Scholar 

  9. S. B. Dev, D. P. Widera, and G. A. Hofmann, “Medical applications of electroporation,” IEEE Transactions on Plasma Science, vol. 28, pp. 206–223, 2000.

    Article  Google Scholar 

  10. K. A. DeBruin and W. Krassowska, “Modeling electroporation in a single cell. I. Effects of field strength and rest potential.” Biophysical Journal, vol. 77, pp. 1213–1224, 1999.

    Article  Google Scholar 

  11. T. R. Gowrishankar and J. C. Weaver, “An approach to electrical modeling of single and multiple cells,” Proceedings of the National Academy of Sciences, vol. 100, pp. 3203–3208, 2003.

    Article  Google Scholar 

  12. W. Krassowska and P. D. Filev, “Modeling electroporation in a single cell,” Biophysical Journal, vol. 92, pp. 404–417, 2007.

    Article  Google Scholar 

  13. K. C. Smith, J. C. Neu, and W. Krassowska, “Model of creation and evolution of stable electropores for DNA delivery,” Biophysical Journal, vol. 86, pp. 2813–2826, 2004.

    Article  Google Scholar 

  14. Talele, S., P. Gaynor, J. van Ekeran, and M. J. Cree. Modelling single cell electroporation with bipolar pulse: Simulating dependence of electroporated fractional pore area on the bipolar field frequency. In: Proceedings International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering. USA (2008).

    Google Scholar 

  15. J. Newman, “Resistance for flow of current to a disk,” Journal of The Electrochemical Society, vol. 113, pp. 501–502, 1966.

    Article  Google Scholar 

  16. J. C. Neu and W. Krassowska, “Modeling postshock evolution of large electropores,” Physical Review E, vol. 67, pp. 1–12, 2003.

    Article  Google Scholar 

  17. J. C. Weaver and Y. Chizmadzhev, “Theory of electroporation: a review,” Bioelectrochemistry and Bioenergetics, vol. 41, pp. 135–160, 1996.

    Article  Google Scholar 

  18. J. Israelachvili, Intermolecular and Surface Forces. London, UK: Academic Press, 1992.

    Google Scholar 

  19. J. C. Neu and W. Krassowska, “Asymptotic model of electroporation,” Physical Review E, vol. 59, pp. 3471–3482, 1999

    Article  Google Scholar 

  20. J. C. Weaver and K. T. Powell, “Theory of electroporation,” in Electroporation and Electrofusion in Cell Biology, E. Neumann, A. E. Sowers, and C. A. Jordan, Eds. New York: Plenum Press, 1989, ch. 7, pp. 111–126.

    Google Scholar 

  21. I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pastushenko, and M. R. Tarasevich, “Electric breakdown of bilayer membranes: I. The main experimental facts and their qualitative discussion,” Bioelectrochemistry and Bioenergetics, vol. 6, pp. 37–52, 1979.

    Article  Google Scholar 

  22. M. Kanduŝer, M. Foŝnaria, M. Ŝentjurc, V. Kralj-Igliĉ, H. Häagerstrand, A. Igliĉ, and D. Miklavĉiĉ, “Effect of surfactant polyoxyethylene glycol C12E8 on electroporation of cell line DC3F,” Colloids and Surfaces A, vol. 214, pp. 205–217, 2003.

    Article  Google Scholar 

  23. A. Barnett and J. C. Weaver, “Electroporation: A unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes,” Bioelectrochemistry and Bioenergetics, vol. 25, pp. 163–182, 1991.

    Article  Google Scholar 

  24. R. P. Joshi, Q. Hu, K. H. Schoenbach, and H. P. Hjalmarson, “Improved energy model for membrane electroporation in biological cells subjected to electrical pulses,” Physical Review E, vol. 65, no. 4, pp. 041 920–041 928, Apr 2002.

    Article  Google Scholar 

  25. V. F. Pastushenko and Y. A. Chizmadzhev, “Stabilization of conducting pores in BLM by electric current,” General Physiology and Biophysics, vol. 1, pp. 43–52, 1982.

    Google Scholar 

  26. M. Hibino, M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita, Jr., “Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential,” Biophysical Journal, vol. 59, pp. 209–220, 1991.

    Article  Google Scholar 

  27. S. Ŝatkauskas, M. F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavĉiĉ, and L. M. Mir, “Mechanisms of in vivo DNA electrotransfer: Respective contributions of cell electropermeabilization and DNA electrophoresis,” Molecular Therapy, vol. 5, pp. 133–140, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Talele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Talele, S., Gaynor, P. (2010). Modelling Control of Pore Number and Radii Distribution in Single-Cell Electroporation. In: Elleithy, K., Sobh, T., Iskander, M., Kapila, V., Karim, M., Mahmood, A. (eds) Technological Developments in Networking, Education and Automation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9151-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9151-2_40

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9150-5

  • Online ISBN: 978-90-481-9151-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics