Skip to main content

Fabrication of Growth Factor Array Using an Inkjet Printer

  • Chapter
  • First Online:
Cell and Organ Printing

Abstract

Although multiple growth factors influence the fate of cells in vivo, it is technically difficult to reproduce similar condition in vitro. To overcome this problem, we have developed growth factor array, a system to study compound effects of multiple growth factors fabricated with a commercial color inkjet printer. By replacing color inks to 2–4 growth factors and printing them on the tissue culture substratum, we prepared growth factor arrays. Culturing cells on the array, we studied the compound effects of growth factors during myogenic and/or osteogenic differentiation of C2C12 myoblast and mesenchymal stem cells in a single culture dish. The cells grown on the array exhibited various levels of differentiation depending on the dose and the combination of growth factors. Since inkjet printer is capable to manipulate several colors simultaneously, this method is suitable for multivariate analyses of growth factors. This method may provide a powerful tool for regenerative medicine, especially for stem cell research on the control of cell-fate determination and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152

    Article  PubMed  CAS  Google Scholar 

  2. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  4. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  5. Mummery CL, van Rooyen M, Bracke M, van den Eijnden-van Raaij J, van Zoelen EJ, Alitalo K (1993) Biochem Biophys Res Commun 191(1):188–195

    Article  PubMed  CAS  Google Scholar 

  6. Avila AM, Davila Garcia MI, Ascarrunz VS, Xiao Y, Kellar KJ (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol Pharmacol 64:974–986

    Article  PubMed  CAS  Google Scholar 

  7. Zebboudj AF, Shin V, Bostrom K (2003) Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J Cell Biochem 90(4):756–765

    Article  PubMed  CAS  Google Scholar 

  8. Florini JR, Magri KA (1989) Effects of growth factors on myogenic differentiation. Am J Physiol 256:C701–C711

    PubMed  CAS  Google Scholar 

  9. Florini JR, Ewton DZ, Magri KA (1991) Hormones, growth factors, and myogenic dfferentiation. Annu Rev Physiol 53:201–216

    Article  PubMed  CAS  Google Scholar 

  10. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 16:481–517

    Google Scholar 

  11. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97(21):11307–11312

    Article  PubMed  CAS  Google Scholar 

  12. Loeser RF, Pacione CA, Chubinskaya S (2003) The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum 48:2188–2196

    Article  PubMed  CAS  Google Scholar 

  13. Ma R, Latif R, Davies T (2009) Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by Activin A. Endocrinology 150:1970–1975

    Article  PubMed  CAS  Google Scholar 

  14. Sulzbacher S, Schoroeder IS, Truong TT, Wobus AM (2009) ActivinA-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors – The influence of differentiation factors and culture conditions. Stem Cell Rev 5:159–173

    Article  PubMed  CAS  Google Scholar 

  15. Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    Article  PubMed  Google Scholar 

  16. Alper J (2004) Bioengineering. Biology and the inkjets. Science 305(5692):1895

    Article  PubMed  CAS  Google Scholar 

  17. Allain LR, Askari M, Stokes DL, Vo-Dinh T (2001) Microarray sampling-platform fabrication using bubble-jet technology for a biochip system. Fresenius J Anal Chem 371(2):146–150

    Article  PubMed  CAS  Google Scholar 

  18. Goldmann T, Gonzalez JS (2000) DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods 42:105–110

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nature Biotech 18:438–441

    Article  CAS  Google Scholar 

  20. Nilsson S, Lager C, Laurell T, Birnbaum S (1995) Thin-Layer immunoaffinity chromatography with bar code quantitation of C-reactive protein. Anal Chem 67:3051–3056

    Article  PubMed  CAS  Google Scholar 

  21. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Protein microdeposition using a conventional ink-jet printer. Bio Techniques 28:492–496

    CAS  Google Scholar 

  22. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373

    Article  PubMed  CAS  Google Scholar 

  23. Sanjana NE, Fuller SB (2004) A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 136(2):151–163

    Article  PubMed  Google Scholar 

  24. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    PubMed  CAS  Google Scholar 

  25. Watanabe K, Miyazaki T, Matsuda R (2003) Growth factor array fabrication using a color ink jet printer. Zool Sci 20:429–434

    Article  PubMed  CAS  Google Scholar 

  26. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7(8):1123–1127

    Article  PubMed  CAS  Google Scholar 

  27. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134

    Article  PubMed  CAS  Google Scholar 

  28. Ito Y, Chen G, Imanishi Y (1996) Photoimmobilization of insulin onto polystyrene dishes for protein-free cell culture. Biotechnol Prog 12:700–702

    Article  PubMed  CAS  Google Scholar 

  29. Matsuda T, Sugawara T (1995) Photochemical protein fixation on polymer surfaces via derivatized phenyl azido group. Langmuir 11:2272–2276

    Article  Google Scholar 

  30. Gregorius K, Mouritsen S, Elsner HI (1995) Hydrocoating: a new method for coupling biomolecules to solid phases. J Immunol Methods 181:65–73

    Article  PubMed  CAS  Google Scholar 

  31. Piwowarczyk W, Matsuda R (1990) A large scale dot blot ELISA using the 96-well culture plate. J Immunol Methods 132(1):147–149

    Article  PubMed  CAS  Google Scholar 

  32. VandeVondele S, Voros J, Hubbell JA (2003) RGD-Grafted Poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 82(7):784–790

    Article  PubMed  CAS  Google Scholar 

  33. Lennon DP, Haynesworth SE, Dennis JE, Caplan AI (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stemcells. Exp Cell Res 219:211–222

    Article  PubMed  CAS  Google Scholar 

  34. Ito Y, Li JS, Takahashi T, Imanishi Y, Okabayashi Y, Kido Y, Kasuga M (1997) Enhancement of the mitogenic effect by artificial juxtacrine stimulation using immobilized EGF. J Biochem 121:514–520

    Article  PubMed  CAS  Google Scholar 

  35. Milasincic DJ, Calera MR, Farmer SR, Pilch PF (1996) Stimulation of C2C12 myoblast growth by basic fibroblast growth factor and insulin-like growth factor 1 can occur via mitogen-activated protein kinase-dependent and -independent pathways. Mol Cell Biol 16(11):5964–5973

    PubMed  CAS  Google Scholar 

  36. Vaidya TB, Rhodes SJ, Taparowsky EJ, Konieczny SF (1989) Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoD1. Mol Cell Biol 9(8):3576–3579

    PubMed  CAS  Google Scholar 

  37. Tollefsen SE, Sadow JL, Rotwein P (1989) Coordinate expression of insulin-like growth factor II and its receptor during muscle differentiation. Proc Natl Acad Sci USA 86:1543–1547

    Article  PubMed  CAS  Google Scholar 

  38. Ito Y (1998) Tissue engineering by immobilized growth factors. Mater Sci Eng C 6(4):267–274

    Article  Google Scholar 

  39. Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M, Mekada E (1995) The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 128:929–938

    Article  PubMed  CAS  Google Scholar 

  40. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  Google Scholar 

  41. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290

    Article  PubMed  CAS  Google Scholar 

  43. Bhang SH, Jeon O, Choi CY, Kwon YH, Kim BS (2007) Controlled release of nerve growth factor from fibrin gel. J Biomed Mater Res A 80(4):998–1002

    PubMed  Google Scholar 

  44. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 27:1755–1766

    Article  Google Scholar 

  45. Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12:1606–1614

    Article  PubMed  CAS  Google Scholar 

  46. Li H, Bartold PM, Zhang CZ, Clarkson RW, Young WG, Waters MJ (1998) Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology 139:3855–3862

    Article  PubMed  CAS  Google Scholar 

  47. Raiche AT, Puleo DA (2004) In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 25(4):677–685

    Article  PubMed  CAS  Google Scholar 

  48. Chen G, Ito Y (2001) Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 22:2453–2457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Watanabe, K. et al. (2010). Fabrication of Growth Factor Array Using an Inkjet Printer. In: Ringeisen, B., Spargo, B., Wu, P. (eds) Cell and Organ Printing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9145-1_12

Download citation

Publish with us

Policies and ethics