Skip to main content

Patterning Cells on Complex Curved Surface by Precision Spraying of Polymers

  • Chapter
  • First Online:
Cell and Organ Printing

Abstract

Developing tissue engineering methods is a very important part of biomedical research and regenerative medicine to replace damaged or degenerating tissue. A key feature of arbitrarily engineered tissue is the ability to control the position of living cells. Maskless Mesoscale Material Deposition Technique (M3D) is a Computer Aided Design (CAD) driven Direct Write technique that has been developed for rapidly depositing a variety of materials and used in manufacturing and assembling of electronic devices. In this method, which we call Precision Spraying (PS), aerosol is generated using a polymer solution, aerosol is transported towards a deposition head using a primary gas flow, focused with secondary gas flow (sheath airflow) through an orifice in the deposition head, and deposited on the substrate to create micron-scale features. This chapter will describe how precision spraying of polymers followed by cell plating can be used as a rapid and flexible two step method to obtain cellular micropatterns. We will discuss two methods of patterning substrates. The first, which we call positive patterning, is a method of patterning adhesive molecules, such as laminin or polyethylenimine (PEI) on a non-adhesive substrate such as polydimethylsiloxane (PDMS) in a single spray operation. Cellular patterns are generated using a variety of animal cell types where cells adhere to the adhesive regions and avoid the non adhesive (bare PDMS) regions. The second method, which we call negative patterning, is a method of patterning hydrophobic materials, such as polytetrafluoroethylene (PTFE) or PDMS, on a relatively more adhesive substrate such as glass. In this method, cells form patterns on the adhesive regions and avoid the hydrophobic regions. We will also discuss how we can obtain cellular patterns on complex curved glass surfaces using the precision spraying method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Letourneau PC (1975) Possible roles for cell-substratum adhesion in neuronal morphogenesis. Dev Biol 44:77–91

    Article  PubMed  CAS  Google Scholar 

  2. Hammarback JA, Palm SL, Furcht LT, Letourneau PC (1985) Guidance of neurite outgrowth by pathways of substratum adsorbed laminin. J Neurosci Res 13:213–220

    Article  PubMed  CAS  Google Scholar 

  3. Corey JM, Wheeler BC, Brewer GJ (1991) Compliance of Hippocampal neurons to patterned substrate networks. J Neurosci Res 30:300–307

    Article  PubMed  CAS  Google Scholar 

  4. Ma W, Liu Q-Y, Jung D, Manos P, Pancrazio JJ, Ascaffner AE, Barker JL, Stenger DA (1998) Central neuronal synapse formation on micropatterned surfaces. Dev Brain Res 111:231–243

    Article  CAS  Google Scholar 

  5. Corey JM, Wheeler BC, Brewer GJ (1996) Micrometer resolution silane-based patterning of hipocampal neurons:critical variables in photoresist and laser ablation process for substrate fabrication. IEEE Transact Biomed Eng 43:944–954

    Article  CAS  Google Scholar 

  6. Kleinfeld D, Kahler H, Hockberger PE (1988) Controlled outgrowth of dissociated neurons on patterned substrates. J Neurosci 8:4098–4120

    PubMed  CAS  Google Scholar 

  7. Bhatia SN, Yarmush ML, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34:189–199

    Article  PubMed  CAS  Google Scholar 

  8. Clark P, Britland S, Connolly P (1993) Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J Cell Sci 105:203–212

    PubMed  CAS  Google Scholar 

  9. Weiss P (1945) Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization. J Exp Zool 100:53–386

    Article  Google Scholar 

  10. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1991) Cell guidance by ultrafine topographyin vitro. J Cell Sci 99:73–77

    PubMed  Google Scholar 

  11. Webb A, Clark P, Skepper J, Compston A, Wood A (1995) Guidance of oligodendrocytes and their progenitors by substratum topography. J Cell Sci 108:2747–2760

    PubMed  CAS  Google Scholar 

  12. Singhvi R, Kumar A, Lopez GP, Stephanopulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Engineering cell shape and function. Science 264:696–698

    Article  PubMed  CAS  Google Scholar 

  13. Chang JC, Brewer GJ, Wheeler BC (2003) A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863–2870

    Article  PubMed  CAS  Google Scholar 

  14. Soekarno A, Lom B, Hockberger PE (1993) Pathfinding by neuroblastoma cells is directed by preferential adhesion to positively charged surfaces. Neuroimage 1:129–144

    Article  PubMed  CAS  Google Scholar 

  15. Brewer GJ, Deshmane S, Ponnusamy E (1998) Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrates. J Neurosci Methods 85:13–20

    Article  PubMed  CAS  Google Scholar 

  16. Tai HC, Buettner HM (1998) Neurite outgrowth and growth cone morphology on micropatterned surfaces. Biotechnol Prog 14:364–370

    Article  PubMed  CAS  Google Scholar 

  17. Wheeler BC, Corey JM, Brewer GJ, Branch DW (1999) Microcontact printing for precise control of nerve growth in culture. J Biomech Eng 121:73–78

    Article  PubMed  CAS  Google Scholar 

  18. Branch DW, Wheeler BC, Brewer GJ, Leckband DE (2000) Long-term maintenance of patterns of Hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine. IEEE Transact Biomed Eng 47:290–300

    Article  CAS  Google Scholar 

  19. Irimia D, Karlsson JOM (2003) Development of cell patterning technique using poly(ethylene glycol) Disilane. Biomed Microdevices 5:185–194

    Article  CAS  Google Scholar 

  20. Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD (2003) Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 81:578–587

    Article  PubMed  CAS  Google Scholar 

  21. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389

    Article  PubMed  CAS  Google Scholar 

  22. Nahmias YK, Gao BZ, Odde DJ (2004) Dimensionless parameters for the design of optical traps and laser guidance system. Appl Opt 43:3999–4006

    Article  PubMed  Google Scholar 

  23. Marquez GJ, Renn MJ, Miller WD (2002) Aerosol-based direct-write of biological materials for biomedical applications. Mat Res Soc Symp Proc 698:343–349

    CAS  Google Scholar 

  24. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  PubMed  CAS  Google Scholar 

  25. Wu PK, Ringeisen BR, Krizman DB, Frondoza CG, Brooks M, Bubb DM, Auyeung RCY, Pique A, Sparge B, McGill RA, Chrisey DB (2003) Laser transfer of biomaterials: matrix assisted pulsed laser evaporation (MAPLE) and MAPLE direct write. Rev Sci Instrum 74:2546–2557

    Article  CAS  Google Scholar 

  26. Chrisey DB, Pique RA, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu PK (2003) Laser deposition of polymer and biomaterial films. Chem Rev 103:553–576

    Article  PubMed  CAS  Google Scholar 

  27. Nahmias YK, Arneja A, Renn MJ, Odde DJ (2005) Cell patterning on biological gels. Tissue Eng 11(5–6):701–708

    Google Scholar 

  28. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715

    Article  PubMed  CAS  Google Scholar 

  29. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305

    Article  CAS  Google Scholar 

  30. Hypolite CL, McLernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu W-S (1997) Formation of microscale gradients of protein using heterobifunctional photolinker. Bioconjug Chem 8:658–663

    Article  PubMed  CAS  Google Scholar 

  31. Herbert CB, McLernon TL, Hypolite CL, Adams DN, Pikus L, Huang CC, Fields GB, Letourneau PC, Distefano MD, Hu W-S (1997) Micropatterning gradients and controlling surface densities of photoactivable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem Biol 4:731–737

    Article  PubMed  CAS  Google Scholar 

  32. De Silva MN, Paulsen J, Renn MJ, Odde DJ (2005) Two-step cell patterning on planar and complex surface by precision spraying of polymers. Biotechnol Bioeng 5; 93(5):919–927

    Google Scholar 

  33. Marquez GJ, Renn MJ, Miller WD (2002) Aerosol-based direct-write of biological materials for biomedical applications. Mat Res Soc Symp Proc 698:343–349

    CAS  Google Scholar 

  34. Baldi A, Fass JN, De Silva MN, Odde DJ, Ziaie B (2003) A micro-tool for mechanical manipulation of in vitro cell arrays. Biomed Microdevices 5:291–295

    Article  Google Scholar 

  35. Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12:971–980

    PubMed  CAS  Google Scholar 

  36. De Silva MN, Desai RA, Odde DJ (2004) Micro-Patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomed Microdevices 6:219–222

    Article  PubMed  Google Scholar 

  37. Tan JL, Liu W, Nelson CM, Srivatsan R, Chen CS (2004) Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 10:865–872

    Article  PubMed  CAS  Google Scholar 

  38. Jackman RJ, Wilbur JL, Whitesides GM (1995) Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. David J. Odde (University of Minnesota), Dr. Michael J. Renn (Optomec Design Co.) and Mr. Jason Paulsen (Optomec Design Co.) for their collaboration in this study. Also, I thank Abhinav Arneja, Patricia Wadsworth, and Andrew Bicek for their advice in NIH 3T3 fibroblast cell culture and LLCPK1-α epithelial cell culture, and Chris Frethem and Alice Ressler at the Electron Microscopy Lab at the University of Minnesota for their technical support. Funding for this project was partially provided by NSF-BITS Grant No. EIA0130875 to D.J.O. and through the Microfabricated Neural Networks Interest Group of the Biomedical Engineering Institute at University of Minnesota. This work was originally published in Biotechnology and BioEngineering, 5; 93(5):919–927. The support to format this work into a book chapter was provided under a U.S. Army contract W911QY-08-D-0017-0005 awarded to General Dynamics Information Technology. The writing of this chapter was supported under a U.S. Army contract W911QY-08-D-0017-0005 awarded to General Dynamics Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauris N. DeSilva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

DeSilva, M.N. (2010). Patterning Cells on Complex Curved Surface by Precision Spraying of Polymers. In: Ringeisen, B., Spargo, B., Wu, P. (eds) Cell and Organ Printing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9145-1_11

Download citation

Publish with us

Policies and ethics