Skip to main content

Banking of Heart Valves

  • Chapter
  • First Online:
Essentials of Tissue Banking

Abstract

The first aortic valve was implanted into a patient at Guys Hospital in London by Donald Ross in 1962 [1] and over the following 45 years major changes have occurred in the processing of heart valves. The first valves were preserved using chemical agents such as formalin, glutaraldehyde, beta propriolactone and in the latter years of the decade ethylene oxide. Prosthetic valves, mainly of the ball in the cage variety or tilting disc, were introduced in the previous decade to the allograft and in the sixties these were the two main types of valves that were used [2, 3]. Xenograft valves were introduced in the seventies being mainly the porcine aortic valve [4], with valves made from bovine pericardium following later in the decade [5]. Also around this time surgeons tried to manufacture heart valves from human tissue with autologous fascia lata [6] being the first material tried and later homologous dura mater [7], and both autologous and homologous pericardium being tried [8]. In the present millennium there are only really three types of valves regularly being implanted and these are bileaflet prosthetic valves, porcine xenografts (which can be stented or unstented) and allografts. Seventy five percent of the allografts are used nowadays in paediatric cases with a further 15% in adult congenital cardiac surgery and the final 10% in adult acquired surgery, particularly in redo operations and patients with bacterial or fungal endocarditis. The advantages and disadvantages of allografts are given in Table 5.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross DN (1962) Homograft replacement of the aortic valve. Lancet 2/7254:487

    Article  Google Scholar 

  2. Starr A, Herr RH, Wood JA (1965) The present status of valve replacement. Acta Chirurgia Scand 374:1–87

    CAS  Google Scholar 

  3. Bjork VO, Holmgren A, Olin C, Ovenfors CO (1971) Clinical and haemodynamic results of aortic valve replacement with Bjork-Shiley tilting disc valve prosthesis. Scand J Thorac Cardiovasc Surg 5:177–191

    Article  PubMed  CAS  Google Scholar 

  4. Carpentier A (1971) The concept of biorposthesis. Thoraxchirurgie vaskulare chirurgie 19:379–383

    CAS  Google Scholar 

  5. Mary DA, Pakrashi BC, Catchpole DW, Ionescu MI (1975) Tissue valves in the mitral position: 5 years experience. Br Heart J 37:1123–1132

    Article  PubMed  CAS  Google Scholar 

  6. Ionescu MI, Ross DN, Deac R et al (1970) Autologous fascia lata for heart valve replacement. Thorax 25:46–56

    Article  PubMed  CAS  Google Scholar 

  7. Zerbini EJ (1975) Results of replacement of cardiac valves by homologous dura mater valves. Chest 67:706–710

    Article  PubMed  CAS  Google Scholar 

  8. Deac RF, Simionescu D, Deac D (1995) New evolution in mitral physiology and surgery: mitral stentless pericardial valve. Ann Thorac Surg 60:5433–5438

    Article  Google Scholar 

  9. Acar C, Tolan M, Berrebi A et al (1996) Homograft replacement of the mitral valve selection, technique of implantation and results in 43 patients. J Thorac Cardiovasc Surg 111:367–380

    Article  PubMed  CAS  Google Scholar 

  10. Agvirregoicoa V, Kearney JN, Davies GA, Gowland G (1989) Effects of antifungals on viability of heart valve cusp derived fibroblasts. Cardiovasc Res 23:1058–1061

    Article  Google Scholar 

  11. Brockbank KG, Dawson PE (1993) Cytotoxicity of amhotericin B for fibroblasts in human heart valve leaflets. Cryobiology 30:19–24

    Article  PubMed  CAS  Google Scholar 

  12. Birtsas V, Armitage WJ (2005) Heart valve cryopreservation: Protocol for addition of dimethyl sulphoxide and amelioration of putative amphotericin B toxicity. Cryobiology 50:139–143

    Article  PubMed  CAS  Google Scholar 

  13. Waterworth PM, Lockey E, Berry EM, Pearce HM (1974) A critical investigation into the antibiotic sterilization of heart valve homografts. Thorax 29:432–436

    Article  PubMed  CAS  Google Scholar 

  14. Wain WH, Pearce HM, Riddell RW, Ross DN (1977) A re-evaluation of antibiotic sterilization of heart valve allografts. Thorax 32:740–742

    Article  PubMed  CAS  Google Scholar 

  15. Yacoub M, Kittle CF (1970) Sterilization of valve homografts by antibiotic solutions. Circulation 41(Suppl II):29–32

    Google Scholar 

  16. LeemingJP, Lovering AM, Hunt CJ (2005) Residual antibiotics in allograft heart valve tissue samples following antibiotic disinfection. J Hosp Infect 60:231–234

    Article  Google Scholar 

  17. Anyanwu CH, Nassau E, Yacoub M (1976) Miliary tuberculosis following homograft valve replacement. Thorax 31:101–106

    Article  PubMed  CAS  Google Scholar 

  18. Warwick RM, Magee JG, Leeming JP et al (2008) Mycobacteria and allograft heart valve banking: An international survey. J Hosp Infect 68:255–261

    Article  PubMed  CAS  Google Scholar 

  19. Mirabet V, Carda C, Solves P et al (2008) Long term storage in liquid nitrogen does not affect cell viability in cardiac valve allografts. Cryobiology 57:113–121

    Article  PubMed  CAS  Google Scholar 

  20. Hunt CJ, Song YC, Bateson EA, Pegg DE (1994) Fractures in cryopreserved arteries. Cryobiology 31:506–515

    Article  PubMed  CAS  Google Scholar 

  21. Pegg DE, Wusteman MC, Boylan S (1997) Fractures in cryopreserved elastic arteries. Cryobiology 34:183–92

    Article  PubMed  CAS  Google Scholar 

  22. Wassenaar C, Wijsmuller EG, Van Herwerden LA et al (1995) Cracks in cryopreseved aortic allografts and rapid thawing. Ann Thorac Surg 60:S165–S167

    Article  PubMed  CAS  Google Scholar 

  23. Lockey E, Al-Janabi N, Gonzalez-Lavin L, Ross DN (1972) A method of sterilizing and preserving fresh allograft heart valves. Thorax 27:398–400

    Article  PubMed  CAS  Google Scholar 

  24. Al-Janabi N, Ross DN (1974) Long term preservation of fresh viable aortic valve homografts by freezing. Br J Surg 61:229–232

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez-Lavin L, McGrath LB, Amini S, Graf D (1987) Determining viability of fresh and cryopreserved homograft valves at implantation. Heart Vessels 3:205–208

    Article  PubMed  CAS  Google Scholar 

  26. Suh H, Lee JE, Park JC et al (1999) Viability and enzymatic activity of cryopreserved heart valves. Yonsei Med J 40:184–190

    PubMed  CAS  Google Scholar 

  27. Brockbank KG, Carpenter JF, Dawson PE (1992) Effects of storage temperature on viable bioprothetic heart valves. Cryobiology 29:537–542

    Article  PubMed  CAS  Google Scholar 

  28. Loose R, Markant H, Sievers H, Bernhard A (1993) Fate of endothelial cells during transport, cryopresevation and thawing of heart valve allografts. Transplant Proc 25:3247–3250

    PubMed  CAS  Google Scholar 

  29. Feng XJ, Van Hove CE, Walter PJ, Herman AG (1996) Effects of storage temperature and fetal calf serum on the endothelium of porcine aortic valves. J Thorac Cardiovasc Surg 111:218–230

    Article  PubMed  CAS  Google Scholar 

  30. Yankah Ac, Wessel U, Dreyer H et al (1987) Transplantation of aortic and pulmonary allografts, enhanced viability of endothelial cells by cryopreservation, importance of histocompatability. J Cardiac Surg 2:S209–S220

    Google Scholar 

  31. Yacoub MH, Festenstein H, Doyle P et al (1987) The influence of HLA matching in cardiac allograft recipients receiving cyclosporine and azothioprine. Transplant Proc 19:2487–2489

    PubMed  CAS  Google Scholar 

  32. Simon A, Wilhelmi M, Steinhoff G et al (1998) Cardiac valve endothelial cells; relevance in the long term function of biological valve prosthesis. J Thorac Cardiovasc Surg 116:609–616

    Article  PubMed  CAS  Google Scholar 

  33. Lupinetti FM, Tsai TT, Kneebone JM, Bove EL (1993) Effect of cryopreservation on the presence of endothelial cells on human vein allografts. J Thorac Cardiovasc Surg 106:912–917

    PubMed  CAS  Google Scholar 

  34. Fischlein T, Schutz A, Uhlig A et al (1994) Integrity and viability of homograft valves. Eur J Cardiothorac Surg 8:425–430

    Article  PubMed  CAS  Google Scholar 

  35. Brockbank KM, Lightfoot FG, Song YC, Taylor MJ (2000) Interstitial ice formation in cryopreserved homografts:a possible cause of tissue deterioration and calcification in vivo. J Heart Valve Dis 9:200–206

    PubMed  CAS  Google Scholar 

  36. Villalba R, Pena J, Luque E, Villagran JLG (2001) Characterization of ultrastructural damage of valves cryopreserved under standard conditions. Cryobiology 43:81–84

    Article  PubMed  CAS  Google Scholar 

  37. Schenke-Layland K, Madershahian N, Riemann I et al (2006) Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann Thorac Surg 81:918–927

    Article  PubMed  Google Scholar 

  38. Wright JEC, Ng YL (1974) Elasticity of human aortic valve cusps. Cardiovasc Res 8:384–390

    Article  PubMed  CAS  Google Scholar 

  39. Wassenaar C, Bax WA, Van Suylen RJ et al (1997) Effects of cryopreservation on contractile properties of porcine isolated aortic valve leaflets and aortic wall. J Thorac Cardiovasc Surg 113:165–172

    Article  PubMed  CAS  Google Scholar 

  40. Vesely I, Gonzalez-Lavin L, Graf D, Bouchner D (1990) Mechanical testing of cryopreserved aortic allografts, comparison with xenografts and fresh tissue. J Thorac Cardiovasc Surg 99:119–123

    PubMed  CAS  Google Scholar 

  41. Gall K, Smith SE, Willmette CA, O’Brien M (1998) Allograft heart valve viability and valve processing variables. Ann Thorac Surg 65:1032–1038

    Article  PubMed  CAS  Google Scholar 

  42. Yacoub M, Rasmi NR, Sundt TM et al (1995) Fourteen year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 110:186–194

    Article  PubMed  CAS  Google Scholar 

  43. da Costa FD, Santos LR, Collatusso C et al (2009) Thirteen years experience with the Ross operation. J Heart Valve Dis 18:84–94

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Parker, R. (2010). Banking of Heart Valves. In: Galea, G. (eds) Essentials of Tissue Banking. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9142-0_5

Download citation

Publish with us

Policies and ethics