Skip to main content

The Analysis of Spatial Experiments

  • Chapter
  • First Online:
Geostatistical Applications for Precision Agriculture

Abstract

Anyone with an interest in precision agriculture has already formed a hypothesis that the field is a sub-optimum management unit for cropping. The role of experimentation is to test this hypothesis. Geostatistics can play an important role in analysing experiments for site-specific crop management: put simply, spatial autocorrelation must be accounted for if one is to draw valid inferences. We provide here some background to the basic concepts of agronomic experimentation. We then consider two broad classes of experimental design for precision agriculture (management-class experiments and local-response experiments), and show, with the aid of case studies, how each may be analysed geostatistically. Ultimately though, if farmers are compelled to use relatively simple designs and less formal analyses, then researchers must follow and adapt their geostatistical analyses accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselin, L. (1988).Spatial econometrics: methods and models. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). A spatial econometric approach to the economics of site-specific nitrogen management in corn production.American Journal of Agricultural Economics,86, 675–687.

    Article  Google Scholar 

  • Beckett, P. H. T., & Webster, R. (1971). Soil variability: a review.Soils and Fertilizers,34, 1–15.

    Google Scholar 

  • Besag, J., & Higdon, D. (1999). Bayesian analysis of agricultural field experiments.Journal of the Royal Statistical Society, Series B: Statistical Methodology,61, 691–746.

    Article  Google Scholar 

  • Bishop, T. F. A., & Lark, R. M. (2006). The geostatistical analysis of experiments at the landscape-scale.Geoderma,133, 87–106.

    Article  Google Scholar 

  • Bishop, T. F. A., & Lark, R. M. (2007). A landscape-scale experiment on the changes in available potassium over a winter wheat cropping season.Geoderma,141, 384–396.

    Article  CAS  Google Scholar 

  • Boyd, D. A., Yuen, Lowsing, T. K., & Needham, P. (1976). Nitrogen requirement of cereals. 1. response curves.Journal of Agricultural Science, Cambridge,87, 149–162.

    Google Scholar 

  • Bramley, R. G. V., Cook, S. E., Adams, M. L., & Corner, R. J. (1999).Designing your own experiments: how precision agriculture can help. Canberra, Australia: Grains Research and Development Corporation.

    Google Scholar 

  • Brus, D. J., & de Gruijter, J. J. (1997). Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with Discussion).Geoderma,80, 1–44.

    Article  Google Scholar 

  • Bruulsema, T. W., Malzer, G. L., Robert, P. C., Davis, J. G., & Copeland, P. J. (1996). Spatial relationships of soil nitrogen with corn yield response to applied nitrogen. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision Agriculture: Proceedings of the 3rd International Conference (pp. 505–512). Madison, WI: ASA, CSSA, SSSA.

    Google Scholar 

  • Christakos, G. (2000).Modern spatiotemporal geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Christakos, G., & Li, X. (1998). Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators.Mathematical Geology,130, 435–462.

    Article  Google Scholar 

  • Cook, S. E., & Bramley, R. G. V. (2000). Coping with variability in agricultural production-implications for soil testing and fertiliser management.Communications in Soil Science and Plant Analysis,31, 1531–1551.

    Article  CAS  Google Scholar 

  • Cook, S. E., Adams, M. L., & Corner, R. J. (1999). On-farm experimentation to determine site-specific responses to variable inputs. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision Agriculture: Proceedings of the 4th International Conference (pp. 611–621). Madison, WI: ASA, CSSA, SSSA.

    Google Scholar 

  • Davis, J. G., Malzer, G. L., Copeland, P. J., Lamb, J. A., & Robert, P. C. (1996). Using yield variability to characterize spatial crop response to applied N. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision Agriculture: Proceedings of the 3rd International Conference (pp. 513–519). Madison, WI: ASA-CSSA-SSSA.

    Google Scholar 

  • de Gruijter, J. J., Brus, D. J., Bierkens, M. F. P., & Knotters, M. (2006).Sampling for natural resource monitoring. Berlin: Springer.

    Google Scholar 

  • Diggle, P. J., & Ribeiro, Jr, P. J. (2007).Model-based geostatistics. New York: Springer.

    Google Scholar 

  • Doerge, T. A., & Gardner, D. L. (1999). On-farm testing using the adjacent strip comparison method. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision Agriculture: Proceedings of the 4th International Conference (pp. 603–609). Madison, WI: ASA, CSSA, SSSA.

    Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984).Statistical procedures for agricultural research. New York: Wiley.

    Google Scholar 

  • Goovaerts, P. (1997).Geostatistics for natural resource evaluation. New York, NY: Oxford University Press.

    Google Scholar 

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments.Ecological Monographs,54, 187–211.

    Article  Google Scholar 

  • Hurley, T. M., Oishi, K., & Malzer, G. L. (2005). Estimating the potential value of variable rate nitrogen applications: a comparison of spatial econometric and geostatistical models.Journal of Agricultural and Resource Economics,30, 231–249.

    Google Scholar 

  • Lambert, D. M., Lowenberg-DeBoer, J., & Bongiovanni, R. (2004). Comparison of four spatial regression models for yield monitor data: a case study from Argentina.Precision Agriculture,5, 579–600.

    Article  Google Scholar 

  • Lark, R. M., & Cullis, B. R. (2004). Model-based analysis using REML for inference from systematically sampled data on soil.European Journal of Soil Science,55, 799–813.

    Article  Google Scholar 

  • Lark, R. M., & Wheeler, H. C. (2003). A method to investigate within-field variation of the response of combinable crops to an input.Agronomy Journal,95, 1093–1104.

    Article  Google Scholar 

  • McBratney, A. B. (1985). The role of geostatistics in the design and analysis of field experiments with reference to the effect of soil properties on crop yield. In D. R. Nielsen, & J. Bouma (Eds.),Soil Spatial Variability: Proceedings of a Workshop of the ISSS and the SSSA. Las Vegas, USA. 30th November–1st December 1984 (pp. 3–8). Wageningen, The Netherlands: Pudoc.

    Google Scholar 

  • Mercer, W. B., & Hall, A. D. (1911). The experimental error of field trials.Journal of Agricultural Science, Cambridge,4, 107–127.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2007). Spatial prediction of soil properties using EBLUP with the Matérn covariance function.Geoderma,140, 324–336.

    Article  Google Scholar 

  • Pannell, D. J. (1998). On the estimation of on-farm benefits of agricultural research.Agricultural Systems,61, 123–134.

    Article  Google Scholar 

  • Panten, K., Bramley, R. G. V., Lark, R. M., & Bishop, T. F. A. (2010). Enhancing the value of field experimentation through whole-of-block designs.Precision Agriculture,11, 18–213.

    Article  Google Scholar 

  • Papritz, A. (2008). Standardised vs. customary ordinary cokriging: some comments on the article “The geostatistical analysis of experiments at the landscape-scale” by T.F.A. Bishop and R.M. Lark.Geoderma,146, 391–396.

    Google Scholar 

  • Pardo-Igúquiza, E., & Dowd, P.A. (1997). AMLE3D: A computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation.Computers & Geosciences,23, 793–805.

    Article  Google Scholar 

  • Pardo-Igúzquiza, E., & Dowd, P. A. (1998). Maximum likelihood inference of spatial covariance parameters of soil properties.Soil Science,163, 212–219.

    Article  Google Scholar 

  • Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal.Biometrika,58, 545–554.

    Article  Google Scholar 

  • Peace, G. S. (1993).Taguchi methods. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Petersen, R. G. (1994).Agricultural field experiments: design and analysis. New York, NY: Marcel Dekker.

    Google Scholar 

  • Pringle, M. J., McBratney, A. B., & Cook, S. E. (2004). Field-scale experiments for site-specific crop management. Part II: a geostatistical analysis.Precision Agriculture,5, 625–645.

    Google Scholar 

  • R Development Core Team. (2008).R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (URL:http://www.R-project.org; last accessed 19.8.2009).

  • Reetz, H. F. (1996). On-farm research opportunities through site-specific management. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision Agriculture: Proceedings of the 3rd International Conference (pp. 1173–1176). Madison, WI: ASA-CSSA-SSSA.

    Google Scholar 

  • Ribeiro, Jr, P. J., & Diggle, P. J. (2001). geoR: A package for geostatistical analysis.R-NEWS, 1, 15–18 (URL:http://cran.r-project.org/doc/Rnews/Rnews_2001--2.pdf; last accessed 19.8.2009).

  • Russell, E. W. (1976).Soil conditions and plant growth (10th ed.). London, UK: Longman.

    Google Scholar 

  • Stein, M. L., Chi, Z., & Welty, L. J. (2004). Approximating likelihood methods for large spatial data sets.Journal of the Royal Statistical Society, Series B: Statistical Methodology,66, 275–296.

    Article  Google Scholar 

  • Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production.Agronomy Journal,99, 1366–1376.

    Article  Google Scholar 

  • Van Groenigen, J. W., & Stein, A. (1998). Constrained optimization of spatial sampling using continuous simulated annealing.Journal of Environmental Quality,27, 1078–1086.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007).Geostatistics for environmental scientists (2nd ed.). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Whelan, B. M., & McBratney, A. B. (2002). A parametric transfer function for grain-flow within a conventional combine harvester.Precision Agriculture,3, 123–134.

    Article  Google Scholar 

  • Whelan, B. M., McBratney, A. B., & Stein, A. (2003). On-farm field experiments for precision agriculture. In J. V. Stafford, & A. Werner (Eds.),Precision Agriculture: Papers from the 4th European Conference on Precision Agriculture, Berlin, Germany, 15–19 June 2003 (pp. 731–737). Wageningen, the Netherlands: Wageningen Academic Publishers.

    Google Scholar 

Download references

Acknowledgements

Thanks to Mr. Michael Ledingham, ‘Merinda’, NSW, for the data for Rosewood field. The contribution of RML is part of the programme in Mathematical and Computational Biology at Rothamsted Research, funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC). The analyses for Bypass field were undertaken as part of a project funded by BBSRC Grant D20191, using data collected in another BBSRC-funded project (Grant 204/11563). Thanks also to Dr Rob Bramley for providing the comments that helped shape the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Pringle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Pringle, M.J., Bishop, T.F.A., Lark, R.M., Whelan, B.M., McBratney, A.B. (2010). The Analysis of Spatial Experiments. In: Oliver, M. (eds) Geostatistical Applications for Precision Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9133-8_10

Download citation

Publish with us

Policies and ethics