The Effects of Land Cover and Land Use Change on the Contemporary Carbon Balance of the Arctic and Boreal Terrestrial Ecosystems of Northern Eurasia

  • Daniel J. HayesEmail author
  • A. David McGuire
  • David W. Kicklighter
  • Todd J. Burnside
  • Jerry M. Melillo


Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1 between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.


Boreal Forest Reference Period Analysis Period Arctic Tundra Forest Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010. doi:10.1126/science.1081056CrossRefGoogle Scholar
  2. Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J Geophys Res 112:G02029. doi:10.1029/2006JG000380CrossRefGoogle Scholar
  3. Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six earth system models of intermediate complexity. Clim Dynam 26(6):587–600. doi:10.1007/s00382-005-0092-6CrossRefGoogle Scholar
  4. Bunn AG, Goetz SJ, Kimball JS, Zhang K (2007) Northern high latitude ecosystems respond to recent climate change. Eos 88(34):333–335 doi:10.1029/2007EO340001CrossRefGoogle Scholar
  5. Burn CR, Nelson FE (2006) Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by Lawrence DM, Slater AG. Geophys Res Lett 33:L21503. doi:10.1029/2006GL027077CrossRefGoogle Scholar
  6. Canadell JG, Gifford R, Houghton R., Lou Y, Pataki D, Raupach M, Smith P, Steffen W (2007) Saturation of the terrestrial carbon sink. In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world, The IGBP series. Springer, Berlin, pp 59–78CrossRefGoogle Scholar
  7. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310:657–660CrossRefGoogle Scholar
  8. Chapin III FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methodology. Ecosystems 9:1041–1050CrossRefGoogle Scholar
  9. Chapin III FS, Randerson JT, McGuire AD, Foley JA, Field CB (2008) Changing feedbacks in the climate-biosphere system. Front Ecol Environ 6(6):313–320. doi:10.1890/080005Google Scholar
  10. Clein JS, Kwiatkowski BL, McGuire AD, Hobbie JE, Rastetter EB, Melillo JM, Kicklighter DW (2000) Modeling carbon responses of moist tundra ecosystems to historical and projected climate: a comparison of fine- and coarse-scale ecosystem models for identification of process-based uncertainties. Glob Chang Biol 6 (Suppl. 1):127–140CrossRefGoogle Scholar
  11. Clein JS, McGuire AD, Zhang X, Kicklighter DW, Melillo JM, Wofsy SC, Jarvis PG. Massheder JM (2002) Historical and projected carbon balance of mature black spruce ecosystems across North America: the role of carbon-nitrogen interactions. Plant Soil 242(1):15–32CrossRefGoogle Scholar
  12. Clein JS, McGuire AD, Euskirchen ES, Calef MP (2007) The effects of different climate input data sets on simulated carbon dynamics in the Western Arctic. Earth Interact 11(12):1–24. doi:10.1175/EI229.1CrossRefGoogle Scholar
  13. Drobot S, Maslanik J, Herzfeld UC, Fowler C, Wu W (2006) Uncertainty in temperature and precipitation datasets over terrestrial regions of the Western Arctic. Earth Interact 10(23):1–17. doi:10.1175/EI191.1CrossRefGoogle Scholar
  14. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12(4):731–750. doi:10.1111/j.1365-2486.2006.01113.xCrossRefGoogle Scholar
  15. Euskirchen SE, McGuire AD, Chapin FS III (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol 13:2425–2438. doi:10.1111/j.1365-2486.2007.01450.xCrossRefGoogle Scholar
  16. Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248Google Scholar
  17. Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Change 73:345–373. doi:10.1007/s10584-005-6776-4CrossRefGoogle Scholar
  18. Felzer BS, Cronin T, Reilly JM, Melillo JM, Wang X (2007) Impacts of ozone on trees and crops. Comptes Rendus Geosci 339:784–798CrossRefGoogle Scholar
  19. Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Ann Rev Environ Res 32. doi:10.1146/ Scholar
  20. Global Soil Data Task Group (2000) Global gridded surfaces of selected soil characteristics (International geosphere-biosphere programme – data and information system), Oak Ridge National Laboratory Distributed Active Archive Center, Oak RidgeGoogle Scholar
  21. Goetz SJ, Bunn A, Fiske G, Houghton RA (2005) Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102:13521–13525CrossRefGoogle Scholar
  22. Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA (2007) Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting Northern Eurasia and North America. Environ Res Lett 2(4). doi:10.1088/1748-9326/2/4/045031Google Scholar
  23. Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen Y, Ciasis P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi S (2004) Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Glob Biogeochem Cycles 18:GB1010. doi:10.1029/2003GB002111CrossRefGoogle Scholar
  24. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Brhwiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Kaksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Toguchi S, Takahashi T, Yuen C-W (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Science 415:626–630Google Scholar
  25. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRefGoogle Scholar
  26. Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Chang Biol 9:500–509. doi:10.1046/j.1365-2486.2003.00620.xCrossRefGoogle Scholar
  27. Houghton, RA, Joos F, Asner GP (2004) The effects of land use and management on the global carbon cycle. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner BL II, Cochrane MA (eds) Land change science: observing, monitoring, and understanding trajectories of change on the earth’s surface. Kluwer, Dordrecht, pp 237–256Google Scholar
  28. Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakovas E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity and resulting secondary lands. Glob Chang Biol 12:1208–1229CrossRefGoogle Scholar
  29. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge; New York, 996 pGoogle Scholar
  30. Johannessen OM, Bengtsson L, Miles MW, Kuzima SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakarov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328–341Google Scholar
  31. Jones PD, Mogberg A (2003) Hemispheric and large scale air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  32. Kaminski T, Heimann M, Giering R (1999) A coarse grid three-dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix. J Geophys Res Atmos 104:18535–18553CrossRefGoogle Scholar
  33. Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region. Geophys Res Lett 33:L09703. doi:10.1029/2006GL025677CrossRefGoogle Scholar
  34. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  35. Kimball JS, Zhao M, McGuire AD, Heinsch FA, Clein J, Calef M, Jolly WM, Kang S, Euskirchen SE, McDonald KC, Running SW (2007) Recent climate driven increases in vegetation productivity for the western Arctic: Evidence of an acceleration of the northern terrestrial carbon cycle. Earth Interact 11(4):1–30CrossRefGoogle Scholar
  36. Kovacs K, Ranson KJ, Sun G, Kharuk VI (2004) The relationship of the Terra MODIS fire product and anthropogenic features in the central Siberian landscape. Earth Interact 8:1–25CrossRefGoogle Scholar
  37. Krankina ON, Houghton RA, Harmon ME, Hogg EH, Butman D, Yatskov M, Huso M, Treyfeld RF, Razuvaev VN, Spycher G (2005) Effects of climate and disturbance on Forest Biomass across Russia. Can J For Res 35:2281–2293CrossRefGoogle Scholar
  38. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle impacts on forest carbon: feedback to climate change. Nature 452:987–990. doi:10.1038/nature06777CrossRefGoogle Scholar
  39. Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547CrossRefGoogle Scholar
  40. Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32. doi:10.1029/2005GL025080Google Scholar
  41. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Rem Sens 21(6&7):1303–1330Google Scholar
  42. Marland G, Boden TA, Andres RJ (2006) Global, regional, and national CO2 emissions. In Trends: a compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  43. McGuire AD, Chapin FS III, Walsh JE, Wirth C (2006) Integrated regional changes in arctic climate feedbacks: implications for the global climate system. Ann Rev Environ Res 31:61–91CrossRefGoogle Scholar
  44. McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B III, Vorosmarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob Biogeochem Cycles 6:101–124CrossRefGoogle Scholar
  45. McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. J Biogeogr 22:785–796CrossRefGoogle Scholar
  46. McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J, Moore B III, Vorosmarty CJ, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Glob Biogeochem Cycles 11:173–189CrossRefGoogle Scholar
  47. McGuire AD, Clein JS, Melillo JM, Kicklighter DW, Meier RA, Vorosmarty CJ, Serreze MC (2000a) Modeling carbon responses of tundra ecosystems to historical and projected climate: sensitivity of pan-arctic carbon storage to temporal and spatial variation in climate. Glob Chang Biol 6(1):141–159. doi:10.1046/j.1365-2486.2000.06017.xCrossRefGoogle Scholar
  48. McGuire AD, Melillo JM, Randerson JT, Parton WJ, Heimann M, Meier RA, Clein JS, Kicklighter DW, Sauf W (2000b) Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: comparison with measurements of atmospheric carbon dioxide in high latitudes. Biogeochemistry 48:91–114CrossRefGoogle Scholar
  49. McGuire AD, Apps M, Chapin FS III, Dargaville R, Flannigan MD, Kasischke ES, Kicklighter D, Kimball J, Kurz W, McCrae DJ, McDonald K, Melillo JM, Myneni R, Stocks BJ, Verbyla DL, Zhuang Q (2004) Land cover disturbances and feedbacks to the climate system in Canada and Alaska. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner II BL, Cochrane MA (eds) Land change science: observing, monitoring, and understanding trajectories of change on the earth's surface. Kluwer, Dordrecht, pp 139–161Google Scholar
  50. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore III B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15:183–206CrossRefGoogle Scholar
  51. McGuire AD, Anderson L, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson T, Macdonald R, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555CrossRefGoogle Scholar
  52. Melillo JM, McGuire AD, Kicklighter DW, Moore III B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240CrossRefGoogle Scholar
  53. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  54. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci 98:14784–14789CrossRefGoogle Scholar
  55. National Geophysical Data Center (NGDC) (1994), TerrainBase v. 1.1, 5-min digital terrain model data. BoulderGoogle Scholar
  56. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Quéré CL, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al. (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–237Google Scholar
  57. Prinn R, Jacoby H, Sokolov A, Wang C, Xiao X, Yang Z, Eckaus R, Stone P, Ellerman D, Melillo J, Fitzmaurice J, Kicklighter D, Holian G, Liu Y (1999) Integrated global system model for climate policy assessment: feedbacks and sensitivity studies. Clim Change 41(3/4):469–546CrossRefGoogle Scholar
  58. Polyakov ID, Alekseev GV, Bekryaev RV, Bhatt U, Colony R, Johnson MA, Karklin VP, Makshtas AP, Walsh D, Yulin AV (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29:1878. doi:10.1029/2001GL011111CrossRefGoogle Scholar
  59. Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B III, Vorosmarty CJ (1991) Potential net primary productivity in South America: application of a global model. Ecol Appl 1, pp 399–429CrossRefGoogle Scholar
  60. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, E. Schuur AG, Zender CS (2006a) The impact of boreal forest fire on climate warming. Science, 314:1130–1132CrossRefGoogle Scholar
  61. Randerson JT, van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS (2006b) Global Fire Emissions Database, Version 2 (GFEDv2.1). Data set. Available on-line [] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi:10.3334/ORNLDAAC/849
  62. Reilly J, Prinn R, Harnisch J, Fitzmaurice J, Jacoby H, Kicklighter D, Melillo J, Stone P, Sokolov A, Wang C (1999) Multi-gas assessment of the Kyoto Protocol. Nature 401:549–555CrossRefGoogle Scholar
  63. Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture and forests due to changing climate, carbon dioxide and ozone. Energy Policy 35:5370–5383CrossRefGoogle Scholar
  64. Sabine CL, Heimann M, Artaxo P, Bakker DCE, Chen C-TA, Field CB, Gruber N, Le Quere C, Prinn RG, Richey JE, Romero P, Sathaye JA, Valentini R (2004) Current status of past trends of the global carbon cycle. In: Field C, Raupach M (eds) Global carbon cycle, integrating humans, climate and the natural world. Island Press, Washington DC, pp 17–44Google Scholar
  65. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172CrossRefGoogle Scholar
  66. Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic Press, New YorkGoogle Scholar
  67. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264CrossRefGoogle Scholar
  68. Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B:391–415Google Scholar
  69. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS, Stackhouse PW (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Change 56:274–296CrossRefGoogle Scholar
  70. Sokolov AP, Kicklighter DW, Melillo JM, Felzer B, Schlosser CA, Cronin TW (2008) Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796Google Scholar
  71. Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547CrossRefGoogle Scholar
  72. Sukhinin AI, French NHF, Kasischke ES, Hewson JH, Soja AJ, Csiszar IA, Hyer EJ, Loboda T, Conrad SG, Romasko VI, Pavlichenko EA, Miskiv SI, Slinkina OA (2004) AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Rem Sens Environ 93(4):546–564CrossRefGoogle Scholar
  73. Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global CO2 budget. Science 247:1431–1438CrossRefGoogle Scholar
  74. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in northern Alaska and the pan-Arctic. Glob Chang Biol 12:686–702CrossRefGoogle Scholar
  75. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK III, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
  76. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J (1999) The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B:414–452Google Scholar
  77. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK III, Moore B III, Vörösmarty CJ (2000) Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Glob Ecol Biogeogr 9:315–336CrossRefGoogle Scholar
  78. Tian H, Melillo JM, Kicklighter DW, Pan S, Liu J, McGuire AD, Moore B III (2003) Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Glob Planet Change 37:201–217. doi:10.1016/S0921-8181(02)00205-9Google Scholar
  79. Van Drecht G, Bouwman AF, Knoop JM, Beusen AHW, Meinardi CR (2003) Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Glob Biogeochem Cycles 17(4):1115. doi:10.1029/2003GB002060CrossRefGoogle Scholar
  80. Webster M, Forest C, Reilly J, Babiker M, Kicklighter D, Mayer M, Prinn R, Sarofim M, Sokolov A, Stone P, Wang C (2003) Uncertainty analysis of climate change and policy response. Clim Change 61(3):295–320CrossRefGoogle Scholar
  81. Xiao X, Melillo JM, Kicklighter DW, McGuire AD, Prinn RG, Wang C, Stone PH, Sokolov A (1998) Transient climate change and net ecosystem production of the terrestrial biosphere. Glob Biogeochem Cycles 12:345–360CrossRefGoogle Scholar
  82. Yi SH, Woo MK, Arain MA (2007) Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys Res Lett 34:L16504. doi:10.1029/2007GL030550CrossRefGoogle Scholar
  83. Zhang K, Kimball JS, Zhao M, Oechel WC, Cassano J, Running SW (2007) Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses. J Geophys Res 112:G01011. doi:10.1029/2006JG000249CrossRefGoogle Scholar
  84. Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus 55(B):751–776Google Scholar
  85. Zhuang Q, Melillo JM, Sarofim MC, Kicklighter DW, McGuire AD, Felzer BS, Sokolov A, Prinn RG, Steudler PA, Hu S (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys Res Lett 33:L17403. doi:10.1029/2006GL026972CrossRefGoogle Scholar
  86. Zhuang Q, Melillo JM, McGuire AD, Kicklighter DW, Prinn RG, Steudler PA, Felzer BS, Hu S (2007) Net emissions of CH4 and CO2 in Alaska: Implications for the region’s greenhouse gas budget. Ecol Appl 17:203–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Daniel J. Hayes
    • 1
    Email author
  • A. David McGuire
    • 2
  • David W. Kicklighter
    • 3
  • Todd J. Burnside
    • 1
  • Jerry M. Melillo
    • 3
  1. 1.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  2. 2.US Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of Alaska FairbanksFairbanksUSA
  3. 3.The Ecosystems centerMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations