Vegetation Cover in the Eurasian Arctic: Distribution, Monitoring, and Role in Carbon Cycling

  • Olga N. KrankinaEmail author
  • Dirk Pflugmacher
  • Daniel J. Hayes
  • A. David McGuire
  • Matthew C. Hansen
  • Tuomas Häme
  • Vladimir Elsakov
  • Peder Nelson


Comparison of several recent, publicly available and widely used land-cover products for the Eurasian Arctic revealed important differences in their representations of vegetation distribution. Such disparities have important implications for models that use these products as driving data sets to monitor vegetation and its role in carbon dynamics. The differences between GLC-2000 and MODIS.PFT are concentrated at borders between biomes, as well as in parts of the region where a significant presence of open-canopy vegetation is expected. In these two maps, tree cover is represented more consistently than shrub or herbaceous cover, and the MODIS.VCF product corroborates the general pattern of tree-cover distribution. The comparison of the MODIS.VCF and AVHRR.VCF maps over northeastern Europe indicates good agreement in the south with increasing disagreement further north primarily due to differences in definitions of the mapped variables. The analysis of land-cover maps at two Landsat validation sites showed different patterns of agreement and disagreement. At the forest dominated St. Petersburg site, the GLC-2000 and MODIS.PFT classifications both exaggerated tree cover and under-reported shrub and herbaceous vegetation. At the tundra site (Komi), the over-reporting of tree cover by GLC-2000 and the failure of MODIS.PFT to separate shrub and herbaceous vegetation were the major issues in representing the overall land cover. A simple analysis that extrapolated results of biogeochemical modeling showed that a very different picture of the regional carbon balance emerges when different vegetation maps are used as model inputs.


Land Cover Tree Cover Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Herbaceous Vegetation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, pp 653–685Google Scholar
  2. Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J Geophys Res 112. doi:10.1029/2006JG000380Google Scholar
  3. Bartalev SA, Belward AS, Erchov DV, Isaev AS (2003) A new Spot4-Vegetation Derived Land Cover Map of Northern Eurasia. Int J Rem Sens 24:1977–1982CrossRefGoogle Scholar
  4. Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16. doi:10.1029/2000GB001360Google Scholar
  5. Breiman L (1996) Bagging predictors. Mach Learn 26:123–140Google Scholar
  6. Bubier JL, Rock BN, Crill PM (1997) Spectral reflectance measurements of boreal wetland and forest mosses. J Geophys Res-Atmos 102:29483–29494CrossRefGoogle Scholar
  7. Canty MJ, Nielsen AA, Schmidt M (2004) Automatic radiometric normalization of multispectral imagery. Rem Sens Environ 91:441–451CrossRefGoogle Scholar
  8. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310:657–660CrossRefGoogle Scholar
  9. Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. doi:10.1007/s10021-005-0105-7CrossRefGoogle Scholar
  10. Chavez PS Jr (1996) Image-based atmospheric corrections – revisited and improved. Photogramm Eng Rem Sens 62:1025–1036Google Scholar
  11. Commission of the European Communities (1993) CORINE land cover: guide technique. Brussels, BelgiumGoogle Scholar
  12. Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Rem Sens Environ 17:301–306CrossRefGoogle Scholar
  13. DeFries RS, Townshend JRG (1994) NDVI derived land cover classifications at a global scale. Int J Rem Sens 15:3567–3586CrossRefGoogle Scholar
  14. DeFries RS, Hansen M, Steininger M, Dubayah R, Sohlberg R, Townshend JRG (1997) Subpixel forest cover in central Africa from multisensor, multitemporal data. Rem Sens Environ 60:228–246CrossRefGoogle Scholar
  15. Di Gregorio A (2005) Land cover classification system: classification concepts and user manual for software – version 2, RomeGoogle Scholar
  16. EUROSTAT (1998) Forestry statistics 1992–1996, LuxembourgGoogle Scholar
  17. Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Ann Rev Environ Res 32:1–29CrossRefGoogle Scholar
  18. Frey KE, Smith LC (2007) How well do we know northern land cover: Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Glob Biogeochem Cycles 21. doi:10.1029/2006GB002706Google Scholar
  19. Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf CB (2002) Global land cover mapping from MODIS: algorithms and early results. Rem Sens Environ 83:287–302CrossRefGoogle Scholar
  20. Fritz S, Bartholome E, Belward A, Hartley A, Stibig HJ, Eva H, Mayaux P, Bartalev SA, Latifovic R, Kolmert S, Roy PS, Agrawal S, Bingfanf W, Wenting X, Ledwith M, Pekel JF, Giri C, Mucher S, de Badts E, Tateishi R, Champeaux JL, Defourny P (2003) Harmonisation, mosaicing and production of the Global Land Cover 2000 database, IspraGoogle Scholar
  21. Fritz S, Lee L (2005). Comparison of land cover maps using fuzzy agreement. Int J Geogr Inf Sci 19:787–807CrossRefGoogle Scholar
  22. Frohn RC, Hinkel KM, Eisner WR (2005) Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Rem Sens Environ 97:116–126CrossRefGoogle Scholar
  23. Giri C, Zhu ZL, Reed B (2005) A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Rem Sens Environ 94:123–132CrossRefGoogle Scholar
  24. Gurney KR, Scott Denning A, Rayner P, Pak B, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fung IY, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi S (2004) Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Glob Biogeochem Cycles 18:GB1010. doi:10.1029/2003GB002111CrossRefGoogle Scholar
  25. Häme T, Stenberg P, Rauste Y (2000) A methodology to estimate forest variables at sub-pixel level. In: Zawila-Niedzwiecki T, Brach M (eds) Proceedings of conference on remote sensing and forest monitoring, RogowGoogle Scholar
  26. Häme T, Stenberg P, Andersson K, Rauste Y, Kennedy P, Folving S, Sarkeala J (2001) AVHRR-based forest proportion map of the Pan-European area. Rem Sens Environ 77:76–91CrossRefGoogle Scholar
  27. Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km resolution using a decision tree classifier. Int J Rem Sens 21:1331–1365CrossRefGoogle Scholar
  28. Hansen MC, DeFries, RS, Townshend J, Sohlberg R, Carroll M, Dimiceli C (2002) Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data. Rem Sens Environ 83(1–2):303–319CrossRefGoogle Scholar
  29. Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003a) Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15CrossRefGoogle Scholar
  30. Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg R (2003b) Vegetation continuous fields MOD44B, 2001 percent tree cover – collection 3, College ParkGoogle Scholar
  31. Hansen MC, Townshend JRG, DeFries RS, Carroll M (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int J Rem Sens 26:4359–4380CrossRefGoogle Scholar
  32. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Stolle F, Steininger MK, Carroll M, Dimiceli C (2010) Humid tropical forest clearing from 2000 to 2005 quantified using multi-temporal and multi-resolution remotely sensed data. Proceedings of the national academy of sciences of USA 107(19):8650–8655Google Scholar
  33. Heiskanen J (2008) Evaluation of global land cover data sets over the tundra-taiga transition zone in northernmost Finland. Int J Rem Sens 29:3727–3751CrossRefGoogle Scholar
  34. Herold M, Mayaux P, Woodcock CE, Baccini A, Schmullius C (2008) Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Rem Sens Environ 112(5). doi:10.1016/j.rse.2007.11.013Google Scholar
  35. Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different. Glob Chang Biol 9:500–509CrossRefGoogle Scholar
  36. Houghton RA, Joos F, Asner GP (2004) The effects of land use and management on the global carbon cycle. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner BL II, Cochrane MA (eds) Land change science: Observing, monitoring, and understanding trajectories of change on the Earth’s surface. Kluwer Academic Publishers, DordrechtGoogle Scholar
  37. Hurtt GC, Frolking S, Fearon MG, Moore B III, Shevliakova E, Malyshev S, Pacala S, Houghton RA (2006) The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Glob Chang Biol 12:1–22CrossRefGoogle Scholar
  38. Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Rem Sens Environ 101:534–553CrossRefGoogle Scholar
  39. Kennedy RE, Cohen WB (2003) Automated designation of tie-points for image-to-image coregistration. Int J Rem Sens 24:3467–3490CrossRefGoogle Scholar
  40. Krankina ON, Fiorella M, Cohen W, Treyfeld RF (1998) The use of Russian forest inventory data for carbon budgeting and for developing carbon offset strategies. World Res Rev 10:52–66Google Scholar
  41. Krankina ON, Houghton RA, Harmon ME, Hogg EH, Butman D, Yatskov M, Huso M, Treyfeld RF, Razuvaev VN, Spycher G (2005) Effects of climate and disturbance on forest biomass across Russia. Can J For Rese 35:2281–2293CrossRefGoogle Scholar
  42. Krankina ON, Pflugmacher D, Friedl M, Cohen WB, Nelson P, Baccini A (2008) Meeting the challenge of mapping peatlands with remotely sensed data. Biogeosci Discuss 5:1–26CrossRefGoogle Scholar
  43. Kukuev YA, Krankina ON, Harmon ME (1997) The forest inventory system in Russia. J Forest 95:15–20Google Scholar
  44. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Rem Sens 21:1303–1330CrossRefGoogle Scholar
  45. Matthews E, Fung I (1987) Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86CrossRefGoogle Scholar
  46. McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J, Moore B III, Vorosmarty CJ, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Glob Biogeochem Cycles 11:173–189CrossRefGoogle Scholar
  47. McGuire AD, Chapin F S III, Wirth C, Apps M, Bhatti J, Callaghan T, Christensen T R, Clein J S, Fukuda M, Maximov T, Onuchin A, Shvidenko A, Vaganov E (2007) Responses of high latitude ecosystems to global change: Potential consequences for the climate system In: Canadell JG, Pataki DE, Pitelka LF (eds.) Terrestrial Ecosystems in a Changing World. The IGBP Series. Springer, Berlin, pp 297–310CrossRefGoogle Scholar
  48. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  49. Morisette JT, Privette JL, Justice CO (2002) A framework for the validation of MODIS Land products. Rem Sens Environ 83:77–96CrossRefGoogle Scholar
  50. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci of USA 98:14784–14789CrossRefGoogle Scholar
  51. Päivinen R, Lehikoinen M, Schuck A, Häme T, Väätäinen S, Kennedy P, Folving S (2001) Combining earth observation data and forest statistics. European Forest Institute, Joint Research Centre – European Commission, EFI Research Report 14, Joensuu, Finland and IspraGoogle Scholar
  52. Pflugmacher D, Krankina ON, Cohen WB (2007) Satellite-based peatland mapping: Potential of the MODIS sensor. Glob Planet Change 56:248–257CrossRefGoogle Scholar
  53. Polyakov ID, Alekseev GV, Bekryaev RV, Bhatt U, Colony R, Johnson MA, Karklin VP, Makshtas AP, Walsh D Yulin AV (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29. doi:10.1029/2001GL011111Google Scholar
  54. Potapov P, Hansen MC, Stehman SV, Loveland TR, Pittman K (2008) Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Rem Sens Environ 112:3708–3719Google Scholar
  55. Rahman H, Dedieu G (1994) SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int J Rem Sens 15:123–143CrossRefGoogle Scholar
  56. Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler DA, Peterson BJ, Grace AL, Moore B III, Vörösmarty CJ (1991) Potential net primary productivity in South America: Application of a global model. Ecol Appl 1:399–429CrossRefGoogle Scholar
  57. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172. doi:10.1038/35102500CrossRefGoogle Scholar
  58. Schlesinger WH (1991) Biogeochemistry: An analysis of global change. San Diego, New YorkGoogle Scholar
  59. Schuck A, Van Brusselen J, Päivinen R, Häme T, Kennedy P, Folving S (2002) Compilation of a calibrated European forest map derived from NOAA-AVHRR data. European Forest Institute. EFI Internal Report 13, 44 pp plus AnnexesGoogle Scholar
  60. Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B:391–415Google Scholar
  61. Sukhinin AI, French NHF, Kasischke ES, Hewson JH, Soja AJ, Csiszar IA, Hyer EJ, Loboda T, Conrad SG, Romasko VI, Pavlichenko EA, Miskiv SI, Slinkina OA (2004) AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Rem Sens Environ 93(4):546–564CrossRefGoogle Scholar
  62. Stahler AH, Boschetti L, Foody GM, Friedl MA, Hansen MC, Herold M, Mayaux P, Morisette JT, Stehman SV, Woodcock CE (2006) Global land cover validation: Recommendations for evaluation and accuracy assessment of global land cover maps. Luxembourg: Office for Official Publications of the European Communities, 60 ppGoogle Scholar
  63. Stroeve J, Markus T, Meier W, Miller J (2006) Recent changes in the Arctic melt season. Ann Glaciol 44(1):367–374. doi:10.3189/172756406781811583CrossRefGoogle Scholar
  64. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano Jr. AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441CrossRefGoogle Scholar
  65. Vogelmann JE, Moss DM (1993) Spectral reflectance measurements in the Genus Sphagnum. Rem Sens Environ 45:273–279CrossRefGoogle Scholar
  66. Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Team C. (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  67. Wan Z, Zhang Y, Zhang Q, Li ZL (2002) Validation of the land surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Rem Sens Environ 83:163–180CrossRefGoogle Scholar
  68. Wolfe RE, Roy DP, Vermote EF (1998) MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans Geosci Rem Sens 36(4):1324–1338CrossRefGoogle Scholar
  69. Wu A, Li Z, Cihlar J (1995) Effects of land cover type and greenness on AVHRR bidirectional reflectances. J Geophys Res 100:9179–9192CrossRefGoogle Scholar
  70. Zhu Z, Evans DL (1994) US forest types and predicted percent forest cover from AVHRR data. Photogramm Eng Rem Sens 60:525–531Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Olga N. Krankina
    • 1
    Email author
  • Dirk Pflugmacher
    • 1
  • Daniel J. Hayes
    • 2
  • A. David McGuire
    • 3
  • Matthew C. Hansen
    • 4
  • Tuomas Häme
    • 5
  • Vladimir Elsakov
    • 6
  • Peder Nelson
    • 1
  1. 1.Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisUSA
  2. 2.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  3. 3.US Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of Alaska FairbanksFairbanksUSA
  4. 4.Geographic Information Science Center of ExcellenceSouth Dakota State UniversityBrookingsUSA
  5. 5.Technical Research Centre of FinlandHelsinkiFinland
  6. 6.Institute of Biology, Komi Science CenterRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations