Skip to main content

Characterization and Monitoring of Tundra-Taiga Transition Zone with Multi-sensor Satellite Data

  • Chapter
  • First Online:
Eurasian Arctic Land Cover and Land Use in a Changing Climate

Abstract

Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for the purposes. In this study, climate-related changes that occurred in the Ary-Mas larch forests (the world’s northernmost forest range) in the last three decades of the twentieth century were analyzed. An analysis of Landsat images in 1973 and 2000 has provided evidence for an increase in the closeness of larch forest canopy by 65% and the expansion of larch to the tundra for 3–10 m per year and to areas relatively poorly protected from wind due to topographic features (elevation, azimuth, and slope). It was found that a tundra-taiga transitional area can be characterized using multi-spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Change 29(2):145–167

    Article  Google Scholar 

  • Bourgeau-Chavez LL, Kasischke ES, Brunzell S, Mudd JP, Tukman M (2002) Mapping fire scars in global boreal forests using imaging radar data. Int J Rem Sens 23(20):4211–4234

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as a proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzal J (eds) Climate variations and forcing mechanisms of the last 2000 years. NATO ASI Series, I, Global Environmental Change, vol 41. Springer, Berlin, p 649

    Google Scholar 

  • Callaghan TV, Crawford RMM, Eronen M, Hofgaard A, Payette S, Rees WG, Skre O, Sveinbjornsson B, Vlassova TK, Werkman BR (2002b) The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. AMBIO Spec Rep 12:3–5

    Google Scholar 

  • Callaghan TV, Werkman BR, Crawford RMM (2002a) The tundra-taiga interface and its dynamics: concepts and applications. AMBIO Spec Rep 12:6–14

    Google Scholar 

  • Carabajal CC, Harding DJ (2005) ICESat validation of SRTM C-Band digital elevation models. Geophys Res Lett 33:L22S01

    Article  Google Scholar 

  • Chapin FS III, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223

    Article  Google Scholar 

  • Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberia larch at Polar Urals treeline during the 20th century. Glob Chang Biol 14(7):1581–1591

    Article  Google Scholar 

  • Diner DJ, Beckert JC, Bothwell GW, Rodriguez JI (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. Trans Geosci Rem Sens 40(7):1449–1466

    Article  Google Scholar 

  • Epstein HE, Beringer J, Gould WA, Lloyd AH, Thompson CD, Chapin FS, Michaelson GJ, Ping CL, Rupp TS, Walker DA (2004) The nature of spatial transitions in Arctic. J Biogeogr 31(12):1917–1933

    Article  Google Scholar 

  • Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32(5):849–862

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior C, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea-ice extents, and ocean heat transport in a version of the Hadley Centre Coupled Model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544

    Article  Google Scholar 

  • Hagner O, Rigina O (1998) Detection of forest decline in Monchegorsk area. Rem Sens Environ 63(1):11–23

    Article  Google Scholar 

  • Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022

    Article  Google Scholar 

  • Harding R, Kuhry P, Christensen TR, Sykes MT, Dankers R (2001) Climate feedbacks at the taiga/tundra interface. AMBIO Spec Rep 12:47–55

    Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410

    Article  Google Scholar 

  • Hu YH, Lee HB, Scarpace FL (1999) Optimal linear spectral unmixing. Trans Geosci Remote Sens 37(1):639–644

    Article  Google Scholar 

  • Hustich I (1953) The boreal limits of conifers. Arctic 6:149–62

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Valencia, 12–17 November 2007

    Google Scholar 

  • Kharuk VI, Dvinskaya ML, Im ST, Ranson KJ (2008) Tree vegetation of the forest-tundra ecotone in the Western Sayan Mountains and climate trends. Russian J Ecol 39(1):8–13

    Google Scholar 

  • Kharuk VI, Dvinskaya ML, Ranson KJ, Im ST (2005) Expansion of evergreen conifers to the larch-dominated zone and climatic trends. Russian J Ecol 3:186–193

    Google Scholar 

  • Kharuk VI, Fedotova EV (2003) Forest-Tundra ecotone dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer, Heidelberg, pp 281–299

    Google Scholar 

  • Kharuk VI, Im ST, Ranson KJ, Naurzbaev MM (2004) Temporal dynamics of larch in the forest-tundra ecotone. Dokl Earth Sci 398(7):1020–1023

    Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST, Naurzbaev MM (2006) Forest-tundra larch forests and climate trends. Russian J Ecol 37(5):291–298

    Article  Google Scholar 

  • Knorre AA, Kirdyanov AV, Vaganov EA (2006) Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia 147(1):86–95

    Article  Google Scholar 

  • Knorre AV (1972) The generalized sketch-map of the Ary-Mas larch forest. In: Report on the geobotany, forests, climate and dendrochronology investigations in the Ary-Mas area. The Central Committee on the Reserves at Russian Federation Government, and the Botany Institute of Russian Academy of Sciences, Leningrad, p 99

    Google Scholar 

  • Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95(4):532–548

    Article  Google Scholar 

  • Lloyd A, Fastie C (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509

    Article  Google Scholar 

  • Masek JG (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28(8):967–976

    Article  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98(26):14784–14789

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increase in plant growth in the Northern High Latitudes from 1981– 1991. Nature 386:698–702

    Article  Google Scholar 

  • Norin BN (ed) (1978) Ary-Mas: environment conditions, flora and vegetation of the most northern forest area in the world. Nauka, Leningrad, p 192

    Google Scholar 

  • Osterkamp TE, Romanovsky VE (1996) Impacts of thawing permafrost as a result of climatic warming. EOS Trans AGU 77(46):F188

    Google Scholar 

  • Pavlov AV (1994) Current changes of climate and permafrost in the Arctic and Sub-Arctic of Russia. Permafrost and Periglacial Process 5:101–110

    Article  Google Scholar 

  • Payette S, Fortin M, Gamache I (2001) The subarctic forest-tundra: the structure of a biome in a changing climate. BioScience 51(9):709–718

    Article  Google Scholar 

  • Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest–tundra of Quebec. Nature 313:570–572

    Article  Google Scholar 

  • Ranson KJ, Sun G, Kovacs K, VI Kharuk VI (2004a) Assessing tundra-taiga boundary with multi-sensor satellite data. Remote Sens Environ 93:283–295

    Article  Google Scholar 

  • Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004b) Landcover attributes from ICESat GLAs data in central Siberia. IGARSS 2004 Proceedings, Anchorage, 20–24 September 2004

    Google Scholar 

  • Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004c) Use of ICESat GLAS data for forest disturbance studies in central Siberia. IGARSS 2004 Proceedings, Anchorage, 20–24 September 2004

    Google Scholar 

  • Raytheon System Co (2003) HDF-EOS data format converter (HEG) users guide, v 1.0, Technical Paper 170-TP-013-001

    Google Scholar 

  • Research Systems Inc (2002) ENVI user’s guide, version 3.4. Boulder, p 930

    Google Scholar 

  • Rees WG (2007) Characterization of Arctic treelines by LiDAR and multispectral imagery. Polar Rec 43(227):345–352

    Google Scholar 

  • Rees WG, Brown I, Mikkola K, Virtanen T, Werkman B (2002) How can the dynamics of the tundra-taiga boundary be remotely monitored? AMBIO Spec Rep 12:56–62

    Google Scholar 

  • Rees WG, Williams M, Vitebsky P (2003) Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sens Environ 85(4):441–452

    Article  Google Scholar 

  • Rosenfield GH, Fitzpatric-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52(2):223–227

    Google Scholar 

  • Sabol DE, Gillespie AR, Adams JB, Smith MO, Tucker CJ (2002) Structural stage in Pacific Northwest forests estimated using simple mixing models of multispectral images. Remote Sens Environ 80(1):1–16

    Article  Google Scholar 

  • Saghri JA, Tescher AG, Jaradi F, Omran M (2000) A viable end-member selection scheme for spectral unmixing of multispectral satellite imagery data. J Imag Sci Technol 44(3):196–203

    Google Scholar 

  • Shi Z, Fung KB (1994) A comparison of digital speckle filters. Proceedings of IGARSS’94, New York, pp 2129–2133

    Google Scholar 

  • Shiyatov SG, Terentjev MM, Fomin VV (2005) Spatiotemporal dynamics of Forest-Tundra communities in the Polar Urals. Russian J Ecol 36(2):83–90

    Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: application to Cienaga Grande de Santa Marta, Colombia. Remote Sens Environ 112(5):2131–2144

    Article  Google Scholar 

  • Skre O, Baxter R, Crawford RMM, Callaghan TV, Fedorkov A (2002) How will the tundra-taiga interface respond to Climate Change? AMBIO Spec Rep 12:37–46

    Google Scholar 

  • Sohn YS, McCoy RM (1997) Mapping desert shrub rangeland using spectral unmixing and modeling spectral mixture with TM data. Photogramm Eng Remote Sens 63(6):707–716

    Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Patersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens Environ 89(3):281–308

    Article  Google Scholar 

  • Suarez F, Binkley D, Kaye MW, Stottlemyer R (1999) Expansion of forest stands into Tundra in the Noatak National Preserve, Northwest Alaska. Ecoscience 6(3):465–470

    Google Scholar 

  • Sun G, Ranson KJ, Kimes DS, Blair JB, Kovacs K (2008) Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ 112(1):107–117

    Article  Google Scholar 

  • Toutoubalina OV, Rees WG (1999) Remote sensing of industrial impact on Arctic vegetation around Noril’sk, northern Siberia: preliminary results. Int J Remote Sens 20(15–16):2979–2990

    Article  Google Scholar 

  • Tyulina LN (1937) Forest vegetation near its Northern limit in the Khatanga region. Trudy Arkticheskogo instituta (Proc Arctic Inst) 63(Geobotanika):83–180

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in Subarctic Eurasia. Nature 400:149–151

    Article  Google Scholar 

  • Virtanen T, Mikkola K, Patova E, Nikula A (2002) Satellite image analysis of human caused changes in the tundra vegetation around the city of Vorkuta, north-European Russia. Environ Pollut 120:647–658

    Google Scholar 

  • Vlassova TK (2002) Human impacts on the tundra-taiga zone dynamics: the case of the Russian lesotundra. AMBIO Spec Rep 12:30–36

    Google Scholar 

  • Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy D, Storey JC, Patt FS (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83:31–49

    Article  Google Scholar 

  • Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sun, G., Ranson, K.J., Kharuk, V.I., Im, S.T., Naurzbaev, M.M. (2010). Characterization and Monitoring of Tundra-Taiga Transition Zone with Multi-sensor Satellite Data. In: Gutman, G., Reissell, A. (eds) Eurasian Arctic Land Cover and Land Use in a Changing Climate. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9118-5_4

Download citation

Publish with us

Policies and ethics