Characterization and Monitoring of Tundra-Taiga Transition Zone with Multi-sensor Satellite Data

  • Guoqing SunEmail author
  • Kenneth J. Ranson
  • Viatcheslav I. Kharuk
  • Sergey T. Im
  • Mukhtar M. Naurzbaev


Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for the purposes. In this study, climate-related changes that occurred in the Ary-Mas larch forests (the world’s northernmost forest range) in the last three decades of the twentieth century were analyzed. An analysis of Landsat images in 1973 and 2000 has provided evidence for an increase in the closeness of larch forest canopy by 65% and the expansion of larch to the tundra for 3–10 m per year and to areas relatively poorly protected from wind due to topographic features (elevation, azimuth, and slope). It was found that a tundra-taiga transitional area can be characterized using multi-spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.


Synthetic Aperture Radar Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Larch Forest Spectral Unmixing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Change 29(2):145–167CrossRefGoogle Scholar
  2. Bourgeau-Chavez LL, Kasischke ES, Brunzell S, Mudd JP, Tukman M (2002) Mapping fire scars in global boreal forests using imaging radar data. Int J Rem Sens 23(20):4211–4234CrossRefGoogle Scholar
  3. Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as a proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzal J (eds) Climate variations and forcing mechanisms of the last 2000 years. NATO ASI Series, I, Global Environmental Change, vol 41. Springer, Berlin, p 649Google Scholar
  4. Callaghan TV, Crawford RMM, Eronen M, Hofgaard A, Payette S, Rees WG, Skre O, Sveinbjornsson B, Vlassova TK, Werkman BR (2002b) The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. AMBIO Spec Rep 12:3–5Google Scholar
  5. Callaghan TV, Werkman BR, Crawford RMM (2002a) The tundra-taiga interface and its dynamics: concepts and applications. AMBIO Spec Rep 12:6–14Google Scholar
  6. Carabajal CC, Harding DJ (2005) ICESat validation of SRTM C-Band digital elevation models. Geophys Res Lett 33:L22S01CrossRefGoogle Scholar
  7. Chapin FS III, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223CrossRefGoogle Scholar
  8. Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberia larch at Polar Urals treeline during the 20th century. Glob Chang Biol 14(7):1581–1591CrossRefGoogle Scholar
  9. Diner DJ, Beckert JC, Bothwell GW, Rodriguez JI (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. Trans Geosci Rem Sens 40(7):1449–1466CrossRefGoogle Scholar
  10. Epstein HE, Beringer J, Gould WA, Lloyd AH, Thompson CD, Chapin FS, Michaelson GJ, Ping CL, Rupp TS, Walker DA (2004) The nature of spatial transitions in Arctic. J Biogeogr 31(12):1917–1933CrossRefGoogle Scholar
  11. Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32(5):849–862CrossRefGoogle Scholar
  12. Gordon C, Cooper C, Senior C, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea-ice extents, and ocean heat transport in a version of the Hadley Centre Coupled Model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  13. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544CrossRefGoogle Scholar
  14. Hagner O, Rigina O (1998) Detection of forest decline in Monchegorsk area. Rem Sens Environ 63(1):11–23CrossRefGoogle Scholar
  15. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022CrossRefGoogle Scholar
  16. Harding R, Kuhry P, Christensen TR, Sykes MT, Dankers R (2001) Climate feedbacks at the taiga/tundra interface. AMBIO Spec Rep 12:47–55Google Scholar
  17. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410CrossRefGoogle Scholar
  18. Hu YH, Lee HB, Scarpace FL (1999) Optimal linear spectral unmixing. Trans Geosci Remote Sens 37(1):639–644CrossRefGoogle Scholar
  19. Hustich I (1953) The boreal limits of conifers. Arctic 6:149–62Google Scholar
  20. IPCC (2007) Climate change 2007: synthesis report. Valencia, 12–17 November 2007Google Scholar
  21. Kharuk VI, Dvinskaya ML, Im ST, Ranson KJ (2008) Tree vegetation of the forest-tundra ecotone in the Western Sayan Mountains and climate trends. Russian J Ecol 39(1):8–13Google Scholar
  22. Kharuk VI, Dvinskaya ML, Ranson KJ, Im ST (2005) Expansion of evergreen conifers to the larch-dominated zone and climatic trends. Russian J Ecol 3:186–193Google Scholar
  23. Kharuk VI, Fedotova EV (2003) Forest-Tundra ecotone dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer, Heidelberg, pp 281–299Google Scholar
  24. Kharuk VI, Im ST, Ranson KJ, Naurzbaev MM (2004) Temporal dynamics of larch in the forest-tundra ecotone. Dokl Earth Sci 398(7):1020–1023Google Scholar
  25. Kharuk VI, Ranson KJ, Im ST, Naurzbaev MM (2006) Forest-tundra larch forests and climate trends. Russian J Ecol 37(5):291–298CrossRefGoogle Scholar
  26. Knorre AA, Kirdyanov AV, Vaganov EA (2006) Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia 147(1):86–95CrossRefGoogle Scholar
  27. Knorre AV (1972) The generalized sketch-map of the Ary-Mas larch forest. In: Report on the geobotany, forests, climate and dendrochronology investigations in the Ary-Mas area. The Central Committee on the Reserves at Russian Federation Government, and the Botany Institute of Russian Academy of Sciences, Leningrad, p 99Google Scholar
  28. Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95(4):532–548CrossRefGoogle Scholar
  29. Lloyd A, Fastie C (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509CrossRefGoogle Scholar
  30. Masek JG (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28(8):967–976CrossRefGoogle Scholar
  31. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98(26):14784–14789CrossRefGoogle Scholar
  32. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increase in plant growth in the Northern High Latitudes from 1981– 1991. Nature 386:698–702CrossRefGoogle Scholar
  33. Norin BN (ed) (1978) Ary-Mas: environment conditions, flora and vegetation of the most northern forest area in the world. Nauka, Leningrad, p 192Google Scholar
  34. Osterkamp TE, Romanovsky VE (1996) Impacts of thawing permafrost as a result of climatic warming. EOS Trans AGU 77(46):F188Google Scholar
  35. Pavlov AV (1994) Current changes of climate and permafrost in the Arctic and Sub-Arctic of Russia. Permafrost and Periglacial Process 5:101–110CrossRefGoogle Scholar
  36. Payette S, Fortin M, Gamache I (2001) The subarctic forest-tundra: the structure of a biome in a changing climate. BioScience 51(9):709–718CrossRefGoogle Scholar
  37. Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest–tundra of Quebec. Nature 313:570–572CrossRefGoogle Scholar
  38. Ranson KJ, Sun G, Kovacs K, VI Kharuk VI (2004a) Assessing tundra-taiga boundary with multi-sensor satellite data. Remote Sens Environ 93:283–295CrossRefGoogle Scholar
  39. Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004b) Landcover attributes from ICESat GLAs data in central Siberia. IGARSS 2004 Proceedings, Anchorage, 20–24 September 2004Google Scholar
  40. Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004c) Use of ICESat GLAS data for forest disturbance studies in central Siberia. IGARSS 2004 Proceedings, Anchorage, 20–24 September 2004Google Scholar
  41. Raytheon System Co (2003) HDF-EOS data format converter (HEG) users guide, v 1.0, Technical Paper 170-TP-013-001Google Scholar
  42. Research Systems Inc (2002) ENVI user’s guide, version 3.4. Boulder, p 930Google Scholar
  43. Rees WG (2007) Characterization of Arctic treelines by LiDAR and multispectral imagery. Polar Rec 43(227):345–352Google Scholar
  44. Rees WG, Brown I, Mikkola K, Virtanen T, Werkman B (2002) How can the dynamics of the tundra-taiga boundary be remotely monitored? AMBIO Spec Rep 12:56–62Google Scholar
  45. Rees WG, Williams M, Vitebsky P (2003) Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sens Environ 85(4):441–452CrossRefGoogle Scholar
  46. Rosenfield GH, Fitzpatric-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52(2):223–227Google Scholar
  47. Sabol DE, Gillespie AR, Adams JB, Smith MO, Tucker CJ (2002) Structural stage in Pacific Northwest forests estimated using simple mixing models of multispectral images. Remote Sens Environ 80(1):1–16CrossRefGoogle Scholar
  48. Saghri JA, Tescher AG, Jaradi F, Omran M (2000) A viable end-member selection scheme for spectral unmixing of multispectral satellite imagery data. J Imag Sci Technol 44(3):196–203Google Scholar
  49. Shi Z, Fung KB (1994) A comparison of digital speckle filters. Proceedings of IGARSS’94, New York, pp 2129–2133Google Scholar
  50. Shiyatov SG, Terentjev MM, Fomin VV (2005) Spatiotemporal dynamics of Forest-Tundra communities in the Polar Urals. Russian J Ecol 36(2):83–90Google Scholar
  51. Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: application to Cienaga Grande de Santa Marta, Colombia. Remote Sens Environ 112(5):2131–2144CrossRefGoogle Scholar
  52. Skre O, Baxter R, Crawford RMM, Callaghan TV, Fedorkov A (2002) How will the tundra-taiga interface respond to Climate Change? AMBIO Spec Rep 12:37–46Google Scholar
  53. Sohn YS, McCoy RM (1997) Mapping desert shrub rangeland using spectral unmixing and modeling spectral mixture with TM data. Photogramm Eng Remote Sens 63(6):707–716Google Scholar
  54. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Patersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens Environ 89(3):281–308CrossRefGoogle Scholar
  55. Suarez F, Binkley D, Kaye MW, Stottlemyer R (1999) Expansion of forest stands into Tundra in the Noatak National Preserve, Northwest Alaska. Ecoscience 6(3):465–470Google Scholar
  56. Sun G, Ranson KJ, Kimes DS, Blair JB, Kovacs K (2008) Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ 112(1):107–117CrossRefGoogle Scholar
  57. Toutoubalina OV, Rees WG (1999) Remote sensing of industrial impact on Arctic vegetation around Noril’sk, northern Siberia: preliminary results. Int J Remote Sens 20(15–16):2979–2990CrossRefGoogle Scholar
  58. Tyulina LN (1937) Forest vegetation near its Northern limit in the Khatanga region. Trudy Arkticheskogo instituta (Proc Arctic Inst) 63(Geobotanika):83–180Google Scholar
  59. Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in Subarctic Eurasia. Nature 400:149–151CrossRefGoogle Scholar
  60. Virtanen T, Mikkola K, Patova E, Nikula A (2002) Satellite image analysis of human caused changes in the tundra vegetation around the city of Vorkuta, north-European Russia. Environ Pollut 120:647–658Google Scholar
  61. Vlassova TK (2002) Human impacts on the tundra-taiga zone dynamics: the case of the Russian lesotundra. AMBIO Spec Rep 12:30–36Google Scholar
  62. Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy D, Storey JC, Patt FS (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83:31–49CrossRefGoogle Scholar
  63. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guoqing Sun
    • 1
    • 2
    Email author
  • Kenneth J. Ranson
    • 3
  • Viatcheslav I. Kharuk
    • 4
  • Sergey T. Im
    • 4
  • Mukhtar M. Naurzbaev
    • 4
  1. 1.Department of GeographyUniversity of MarylandGreenbeltUSA
  2. 2.Biospheric Sciences BranchNASA/GSFC, Code 923GreenbeltUSA
  3. 3.NASA’s Goddard Space Flight CenterGreenbeltUSA
  4. 4.V.N. Sukachev Institute of Forest, SB RASKrasnoyarskRussia

Personalised recommendations