Skip to main content

High diversity of Ruppia meadows in saline ponds and lakes of the western Mediterranean

  • Pond Conservation
  • Chapter
Pond Conservation in Europe

Part of the book series: Developments in Hydrobiology 210 ((DIHY,volume 210))

  • 1845 Accesses

Abstract

Saline inland and coastal waterbodies are valuable habitats that deserve attention for the protection of their unique submerged macrophyte beds that render the water clear, stabilize sediments and provide a habitat for high biomasses of invertebrates as food for waterfowl. The ‘continental seagrass’ Ruppia has the widest salinity tolerance among the submerged macrophytes and occurs in a wide variety of saline saltmarsh pond and lagoon systems. Although two cosmopolitan species Ruppia maritima and Ruppia cirrhosa are recognized in Europe and Ruppia drepanensis in the western Mediterranean, their diversity and distribution are not well known. This previously held traditional idea that there are only two widespread Ruppia species suggests a uniform and very homogenized population structure following the hypothesis of long-distance-dispersal through strong bird-mediated dispersal events. Therefore, the Ruppia chloroplast DNA diversity was investigated along a more than 1,000 km transect of the Iberian Peninsula. We studied 492 individuals from 11 wetland areas (17 ponds) and sequenced a 1,753-bp length of seven chloroplast introns. Eight haplotypes represented at least four distinct groups or taxa which is higher than commonly accepted. Six wetland areas contained more than one haplotype and within-pond diversity occurred within distances as small as 30 m (5 out of 17 cases). This underlines the importance of single waterbodies for harbouring haplotypic diversity in Ruppia. Unique haplotypes were observed in four wetland areas and R. maritima was detected only from a low salinity pond, suggesting the species might be more rare than previously accepted. The present results tend to minimize an overall effect of strong bird-mediated dispersal. This emphasizes the role of regional pond habitat diversity for the preservation of Ruppia taxa and their unique haplotype diversity in extreme saline habitats.

Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle

Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aedo, C. & M. Fernandez Casado, 1988. The taxonomic position of Ruppia populations along the Cantabrian coast. Aquatic Botany 32: 187–192.

    Article  Google Scholar 

  • Araki, S. & H. Kunii, 2006. Allozymic implications of the propagation of eelgrass Zostera japonica within a river system. Limnology 7: 15–21.

    Article  CAS  Google Scholar 

  • Brock, M. A., 1982. Biology of the salinity tolerant genus Ruppia L. in saline lakes in South Australia II. Population ecology and reproductive biology. Aquatic Botany 13: 249–268.

    Article  Google Scholar 

  • Casper, S. & H.-D. Krausch, 1980. Süsswasserflora von Mitteleuropa 23. Gustav Fisher, Stuttgart.

    Google Scholar 

  • Cirujano, S., 1986. El género Ruppia L. (Potamogetonaceae) en la Mancha (Espana). Boletim da Sociedade Broteriana, Série 2, 59: 293–303.

    Google Scholar 

  • Cirujano, S. & P. Garcia-Murillo, 1990. Ruppiaceae. Fontqueria 28: 159–165.

    Google Scholar 

  • Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  • Dandy, J., 1980. Ruppia. In Tutin, T. G., H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webb (eds), Flora Europaea. Vol V (1st ed.) Alismataceae to Orchidaceae. Oxford, Cambridge University Press: 11.

    Google Scholar 

  • Goremykin, V. V., B. Holland, K. I. Hirsch-Ernst & F. H. Hellwig, 2005. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Molecular Biology and Evolution 22: 1813–1822.

    Article  CAS  PubMed  Google Scholar 

  • Green, P. & F. T. Short, 2003. World atlas of seagrasses. UNEP-WCMC, University of California Press, Berkeley and Los Angeles: 298.

    Google Scholar 

  • Les, D. H., M. Cleland & M. Waycott, 1997. Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (Seagrasses) and hydrophily. Systematic Botany 22: 443–463.

    Article  Google Scholar 

  • Malea, P., T. Kevrekidis & A. Mogias, 2004. Annual versus perennial growth cycle in Ruppia maritima L.: temporal variation in population characteristics in Mediterranean lagoons (Monolimni and Drana lagoons, Northern Aegean Sea). Botanica Marina 47: 357–366.

    Article  Google Scholar 

  • Marchioni Ortu, A., 1982. Numeri cromosomici per la flora italiana: 873-876. Informatore Botanico Italiano 14: 234–237.

    Google Scholar 

  • Reusch, T. B., 2001. Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). Journal of Evolutionary Biology 14: 129–138.

    Article  Google Scholar 

  • Rivas-Martínez, S., A. Asensi, B. Díez-Garretas, J. Molero & F. Valle, 2003. Biogeographical synthesis of Andalusia (southern Spain). Journal of Biogeography 24: 915–928.

    Article  Google Scholar 

  • Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologia 23: 137–154.

    Article  Google Scholar 

  • Talavera, S., P. Garcia-Murillo & H. Smit, 1986. Sobre el genero Zannichellia L. (Zannichelliaceae). Lagascalia 14: 241–271.

    Google Scholar 

  • Talavera, S., P. Garcia-Murillo & J. Herrera, 1993. Chromosome numbers and a new model for karyotype evolution in Ruppia L. (Ruppiaceae). Aquatic Botany 45: 1–13.

    Article  Google Scholar 

  • Triest, L. & A. Mannaert, 2006. The relationship between Callitriche L. clones and environmental variables using genotypes. Hydrobiologia 570: 73–77.

    Article  CAS  Google Scholar 

  • Triest, L. & J. J. Symoens, 1991. Isozyme variation in populations of the submerged halophyte Ruppia (Ruppiaceae). Opera Botanica Belgica 4: 115–132.

    Google Scholar 

  • Triest, L. & L. Vanhecke, 1991. Isozymes in European and Mediterranean Zannichellia (Zannichelliaceae) populations: a situation of predominant inbreeders. Opera Botanica Belgica 4: 133–166.

    Google Scholar 

  • Triest, L., V. Tran Thi & T. Sierens, 2007. Chloroplast microsatellite markers reveal Zannichellia haplotypes across Europe using herbarium DNA. Belgian Journal of Botany 140: 109–120.

    Google Scholar 

  • Van Vierssen, W., R. Van Wijk & J. Vander Zee, 1981. Some additional notes on the cytotaxonomy of Ruppia taxa in Western Europe. Aquatic Botany 11: 297–301.

    Article  Google Scholar 

  • Verhoeven, J., 1979. The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representatives in relation to their autoecology. Aquatic Botany 6: 197–268.

    Article  CAS  Google Scholar 

  • Verhoeven, J., 1980a. Synecological classification, structure and dynamics of the macroflora and macrofauna communities. Aquatic Botany 8: 1–85.

    Article  Google Scholar 

  • Verhoeven, J., 1980b. Aspects of production, consumption and decomposition. Aquatic Botany 8: 209–253.

    Article  CAS  Google Scholar 

  • Weising, K. & C. Gardner, 1999. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42: 9–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Triest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Triest, L., Sierens, T. (2009). High diversity of Ruppia meadows in saline ponds and lakes of the western Mediterranean. In: Oertli, B., Céréghino, R., Biggs, J., Declerck, S., Hull, A., Miracle, M.R. (eds) Pond Conservation in Europe. Developments in Hydrobiology 210, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9088-1_21

Download citation

Publish with us

Policies and ethics