Skip to main content

Regulators of TLR4 Signaling by Endotoxins

  • Chapter
  • First Online:
Endotoxins: Structure, Function and Recognition

Part of the book series: Subcellular Biochemistry ((SCBI,volume 53))

Abstract

The stimulation of TLR4 by LPS activates two distinct signaling pathways leading to the expression of diverse inflammatory genes. Intensive studies over the past decade have revealed the components involved in these signaling pathways, however, more recently the focus has shifted somewhat towards the components that regulate these pathways. Several regulatory mechanisms, including localisation of components, splice variants and inhibitory molecules will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PRRs:

pathogen recognition receptors

PAMPS:

pathogen-associated molecular patterns

IFNs:

interferons

TLRs:

Toll-like receptors

LPS:

lipopolysacchairde

TIR:

toll-IL-1 receptor

MYD88:

myeloid differentiation primary response gene (88)

Mal:

MyD88-adaptor like

TRIF:

TIR domain-containing adapter inducing IFN-beta

TRAM:

TRIF-related adaptor molecule

Mal:

MyD88-adaptor like

TAG:

TRAM adaptor with GOLD domain

References

  • Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9 (1998) 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Akira, S., Hoshino, K., Kaisho, T. The role of Toll-like receptors and MyD88 in innate immune responses. J Endotoxin Res, 6 (2000) 383–387.

    PubMed  CAS  Google Scholar 

  • Akira, S., Uematsu, S., Takeuchi, O. Pathogen recognition and innate immunity. Cell 124 (2006) 783–801.

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman, V., Aravind, L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol 3 (2002) research0023.

    PubMed  Google Scholar 

  • Anderson, K.V., Bokla, L., Nusslein-Volhard, C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42 (1985) 791–798.

    Article  PubMed  CAS  Google Scholar 

  • Baetz, A., Frey, M., Heeg, K., Dalpke, A.H. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem 279 (2004) 54708–54715.

    Article  PubMed  CAS  Google Scholar 

  • Botelho, R.J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J.D., Meyer, T., et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151 (2000) 1353–1368.

    Article  PubMed  CAS  Google Scholar 

  • Brint, E.K., Xu, D., Liu, H., Dunne, A., McKenzie, A.N., O’Neill, L.A., Liew, F.Y. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 5 (2004) 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., Tschopp, J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 197 (2003) 263–268.

    Article  PubMed  Google Scholar 

  • Butler, M.P., Hanly, J. A., Moynagh, P.N. Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases. J Biol Chem 282 (2007) 29729–29737.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.J. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7 (2005) 758–765.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., Baltimore, D. TANK, a co-inducer with TRAF2 of TNF- and CD 40L-mediated NF-kappaB activation. Genes Dev 10 (1996) 963–973.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, S., Silverman, N. Host-pathogen interactions in drosophila: new tricks from an old friend. Nat Immunol 7 (2006) 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, T.H., Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5 (2004) 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Conze, D.B., Wu, C.J., Thomas, J.A., Landstrom, A., Ashwell, J.D. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 28 (2008) 3538–3547.

    Article  PubMed  CAS  Google Scholar 

  • Crespo, A., Filla, M.B., Russell, S.W. Murphy, W.J., Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J 349 (2000) 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Dalpke, A.H., Opper, S., Zimmermann, S., Heeg, K. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol 166 (2001) 7082–7089.

    PubMed  CAS  Google Scholar 

  • Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., et al., Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103 (2000) 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Divanovic, S., Trompette, A., Atabani, S.F., Madan, R., Golenbock, D.T., Visintin, A., Finberg, R.W., et al., Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6 (2005) 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Dunne, A., Ejdeback, M., Ludidi, P.L., O’Neill, L.A., Gay, N.J. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278 (2003) 41443–41451.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.C., Ovaa, H., Hamon, M., Kilshaw, P.J., Hamm, S., Bauer, S., Ploegh, H.L., Smith, T.S. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 378 (2004) 727–734.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., et al., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4 (2003) 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, K.A., Palsson-McDermott, E.M., Bowie, A.G., Jefferies, C.A., Mansell, A.S., Brady, G., Brint, E., et al., Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413 (2001) 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Guo, B., Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282 (2007) 11817–11826.

    Article  PubMed  CAS  Google Scholar 

  • Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., et al., Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439 (2006) 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, M.P., O’Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 279 (2004) 27699–27708.

    Article  PubMed  CAS  Google Scholar 

  • Haziot, A., Rong, G.W., Lin, X.Y., Silver, J., Goyert, S.M. Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). J Immunol 154 (1995) 6529–6532.

    PubMed  CAS  Google Scholar 

  • He, J.Q., Saha, S.K., Kang, J.R., Zarnegar, B., Cheng, G. Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. J Biol Chem 282 (2007) 3688–3694.

    Article  PubMed  CAS  Google Scholar 

  • Henkler, F., Baumann, B., Fotin-Mleczek, M., Weingartner, M., Schwenzer, R., Peters, N., Graness, A., et al., Caspase-mediated cleavage converts the tumor necrosis factor (TNF) receptor-associated factor (TRAF)-1 from a selective modulator of TNF receptor signaling to a general inhibitor of NF-kappaB activation. J Biol Chem 278 (2003) 29216–29230.

    Article  PubMed  CAS  Google Scholar 

  • Heyninck, K., Beyaert, R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 442 (1999) 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Honda, K., Ohba, Y., Yanai, H., Negishi, H., Mizutani, T., Takaoka, A., Taya, C., et al., Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434 (2005) 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba, Y., et al., Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA 101 (2004) 15416–15421.

    Article  PubMed  CAS  Google Scholar 

  • Horng, T., Barton, G.M., Flavell, R.A., Medzhitov, R., The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420 (2002) 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Husebye, H., Halaas, O., Stenmark, H., Tunheim, G., Sandanger, O., Bogen, B., Brech, A., et al., Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. Embo J 25 (2006) 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Iwami, K.I., Matsuguchi, T., Masuda, A., Kikuchi, T., Musikacharoen, T., Yoshikai, Y. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165 (2000) 6682–6686.

    PubMed  CAS  Google Scholar 

  • Jaresova, I., Rozkova, D., Spisek, R., Janda, A., Brazova, J., Sediva, A., Kinetics of Toll-like receptor-4 splice variants expression in lipopolysaccharide-stimulated antigen presenting cells of healthy donors and patients with cystic fibrosis. Microbes Infect 9 (2007) 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Jaunin, F., Burns, K., Tschopp, J., Martin, T.E., Fakan, S. Ultrastructural distribution of the death-domain-containing MyD88 protein in HeLa cells. Exp Cell Res 1998, 243 (1998) 67–75.

    CAS  Google Scholar 

  • Kagan, J.C., Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 2006, 125 (2006) 943–955.

    CAS  Google Scholar 

  • Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008, 9 (2008) 361–368.

    CAS  Google Scholar 

  • Kawagoe, T., Takeuchi, O., Takabatake, Y., Kato, H., Isaka, Y., Tsujimura, T., Akira, S. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10 (2009) 965–972.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 (1999) 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, T., Akira, S. TLR signaling. Cell Death Differ 13 (2006) 816–825.

    Article  PubMed  CAS  Google Scholar 

  • Keating, S.E., Maloney, G.M., Moran, E.M., Bowie, A.G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J Biol Chem 282 (2007) 33435–33443.

    Article  PubMed  CAS  Google Scholar 

  • Kenny, E.F., O’Neill, L.A. Signalling adaptors used by Toll-like receptors: an update. Cytokine 43 (2008) 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Khor, C.C., Chapman, S.J., Vannberg, F.O., Dunne, A., Murphy, C., Ling, E.Y., Frodsham, A.J., et al., A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39 (2007) 523–528.

    Article  PubMed  CAS  Google Scholar 

  • Kinjyo, I., Hanada, T., Inagaki-Ohara, K., Mori, H., Aki, D., Ohishi, M., Yoshida, H., Kubo, M., Yoshimura, A. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17 (2002) 583.

    Article  PubMed  CAS  Google Scholar 

  • Kitchens, R.L., Thompson, P.A., Viriyakosol, S., O’Keefe, G.E., Munford, R.S. Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. J Clin Invest 108 (2001) 485-493.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Hernandez, L.D., Galan, J.E., Janeway, C.A., Jr., Medzhitov, R., Flavell, R.A. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110 (2002) 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Latz, E., Visintin, A., Lien, E., Fitzgerald, K.A., Monks, B.G., Kurt-Jones, E.A., Golenbock, D.T., Espevik, T. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277 (2002) 47834–47843.

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 (1996) 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Leo, E., Deveraux, Q.L., Buchholtz, C., Welsh, K., Matsuzawa, S., Stennicke, H.R., Salvesen, G.S., Reed, J.C. TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-alpha-induced apoptosis. J Biol Chem 276 (2001) 8087–8093.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Hailey, D.W., Soetandyo, N., Li, W., Lippincott-Schwartz, J., Shu, H.B., Ye, Y. Localization of A20 to a lysosome-associated compartment and its role in NFkappaB signaling. Biochim Biophys Acta 1783 (2008) 1140–1149.

    Article  PubMed  CAS  Google Scholar 

  • Lord, K.A., Hoffman-Liebermann, B., Liebermann, D.A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5 (1990) 1095–1097.

    PubMed  CAS  Google Scholar 

  • Maine, G.N., Mao, X., Komarck, C.M., Burstein, E. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. Embo J 26 (2007) 436–447.

    Article  PubMed  CAS  Google Scholar 

  • Mansell, A., Smith, R., Doyle, S.L., Gray, P., Fenner, J.E., Crack, P.J., Nicholson, S.E., et al., Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7 (2006) 148–155.

    Article  PubMed  CAS  Google Scholar 

  • McGettrick, A.F., O’Neill, L.A. The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 41 (2004) 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov, R., Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296 (2002) 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Barbera, E., Corral-Rodriguez, M.A., Soares-Schanoski, A., Velarde, M., Macieira, S., Messerschmidt, A., Lopez-Collazo, E., et al. Contribution of globular death domains and unstructured linkers to MyD88.IRAK-4 heterodimer formation: an explanation for the antagonistic activity of MyD88 s. Biochem Biophys Res Commun 380 (2009) 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., Tschopp, J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 2004, 5 (2004) 503–507.

    CAS  Google Scholar 

  • Miyake, K., Shimazu, R., Kondo, J., Niki, T., Akashi, S., Ogata, H., Yamashita, Y., et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J Immunol 1998, 161 (1998) 1348–1353.

    CAS  Google Scholar 

  • Miyake, K., Yamashita, Y., Ogata, M., Sudo, T., Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154 (1995) 3333–3340.

    PubMed  CAS  Google Scholar 

  • Morisato, D., Anderson, K.V. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 1995, 29:371–399.

    Article  PubMed  CAS  Google Scholar 

  • Muzio, M., Ni, J., Feng, P., Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278 (1997) 1612–1615.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3 (2002) 667–672.

    PubMed  CAS  Google Scholar 

  • Nakagawa, R., Naka, T., Tsutsui, H., Fujimoto, M., Kimura, A., Abe, T., Seki, E., Sato, S., Takeuchi, O., Takeda, K., Akira, S., Yamanishi, K., Kawase, I., Nakanishi, K., Kishimoto, T. SOCS-1 participates in negative regulation of LPS responses. Immunity 17 (2002) 677.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, F., Kawai, T., Nakanishi, K., Akira, S. NF-kappaB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes Cells 5 (2000) 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439 (2006) 208–211.

    Article  PubMed  CAS  Google Scholar 

  • Ordureau, A., Smith, H., Windheim, M., Peggie, M., Carrick, E., Morrice, N., Cohen, P. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 409 (2008) 43–52.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, S.M., Moynagh, P.N. Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem Biophys Res Commun 303 (2003) 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Palsson-McDermott, E.M., Doyle, S.L., McGettrick, A.F., Hardy, M., Husebye, H., Banahan, K., Gong, M., et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol 10 (2009) 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 (1998) 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz, J.L., Baltimore, D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J 18 (1999) 6694–6704.

    Article  PubMed  CAS  Google Scholar 

  • Poyet, J.L., Srinivasula, S.M., Lin, J.H., Fernandes-Alnemri, T., Yamaoka, S., Tsichlis, P.N., Alnemri, E.S. Activation of the Ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J Biol Chem 275 (2000) 37966–37977.

    Article  PubMed  CAS  Google Scholar 

  • Prele, C.M., Woodward, E.A., Bisley, J., Keith-Magee, A., Nicholson, S.E., Hart, P.H. SOCS1 regulates the IFN but not NFkappaB pathway in TLR-stimulated human monocytes and macrophages. J Immunol 181 (2008) 8018–8026.

    PubMed  CAS  Google Scholar 

  • Qing, G., Qu, Z., Xiao, G. Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 280 (2005) 40578–40582.

    Article  PubMed  CAS  Google Scholar 

  • Randow, F., Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3 (2001) 891-896.

    Article  PubMed  CAS  Google Scholar 

  • Rao, N., Nguyen, S., Ngo, K., Fung-Leung, W.P. A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol Cell Biol 25 (2005) 6521–6532.

    Article  PubMed  CAS  Google Scholar 

  • Rothe, M., Xiong, J., Shu, H.B., Williamson, K., Goddard, A., Goeddel, D.V. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc Natl Acad Sci USA 93 (1996) 8241–8246.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, D.C., McGettrick, A.F., Latz, E., Monks, B.G., Gay, N.J., Yamamoto, M., Akira, S., et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA 103 (2006) 6299–6304.

    Article  PubMed  CAS  Google Scholar 

  • Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12 (2003) 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T., Yamamoto, M., Miyagishi, M., Taira, K., Nakanishi, M., Fujita, T., Akira, S., et al., A20 is a negative regulator of IFN regulatory factor 3 signaling, J Immunol 174 (2005) 1507–1512.

    PubMed  CAS  Google Scholar 

  • Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6 (2005) 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  • Schauvliege, R., Janssens, S., Beyaert, R. Pellino proteins: novel players in TLR and IL-1R signalling. J Cell Mol Med 11 (2007) 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G.P., Lin, R., Hiscott, J. Triggering the interferon antiviral response through an IKK-related pathway. Science 300 (2003) 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., Kimoto, M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189 (1999) 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Song, H.Y., Rothe, M., Goeddel, D.V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93 (1996) 6721–6725.

    Article  PubMed  CAS  Google Scholar 

  • Su, J., Zhang, T., Tyson, J., Li, L. The Interleukin-1 Receptor-Associated Kinase M Selectively Inhibits the Alternative, Instead of the Classical NFkappaB Pathway. J Innate Immun 1 (2009) 164–174.

    Article  PubMed  CAS  Google Scholar 

  • Su, X., Li, S., Meng, M., Qian, W., Xie, W., Chen, D., Zhai, Z. et al., TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 36 (2006) 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., Suzuki, S., Duncan, G.S., Millar, D.G., Wada, T., Mirtsos, C., Takada, H.. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416 (2002) 750–756.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Shibata, T., Akashi-Takamura, S., Kiyokawa, T., Wakabayashi, Y., Tanimura, N., Kobayashi, T., et al. A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. J Exp Med 204 (2007) 2963–2976.

    Google Scholar 

  • Takeshita, F., Ishii, K.J., Kobiyama, K., Kojima, Y., Coban, C., Sasaki, S., Ishii, N., et al. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur J Immunol 35 (2005) 2477–2485.

    Article  PubMed  CAS  Google Scholar 

  • Tanimura, N., Saitoh, S., Matsumoto, F., Akashi-Takamura, S., Miyake, K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun 368 (2008) 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Teghanemt, A., Widstrom, R.L., Gioannini, T.L., Weiss, J.P.. Isolation of monomeric and dimeric secreted MD-2. Endotoxin.sCD14 and Toll-like receptor 4 ectodomain selectively react with the monomeric form of secreted MD-2. J Biol Chem. 283 (2008) 21881–21889.

    Article  PubMed  CAS  Google Scholar 

  • Thieblemont, N., Wright, S.D.. Transport of bacterial lipopolysaccharide to the golgi apparatus, J Exp Med. 190 (1999) 523–534.

    Article  PubMed  CAS  Google Scholar 

  • Thomassen, E., Renshaw, B.R., Sims, J.E.. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine. 11 (1999) 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Tobias, P.S., Soldau, K., Gegner, J.A., Mintz, D., Ulevitch, R.J. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 270 (1995) 10482–10488.

    Article  PubMed  CAS  Google Scholar 

  • Verstak, B., Nagpal, K., Bottomley, S.P., Golenbock, D.T., Hertzog, P.J., Mansell, A. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 284 (2009) 24192–24203.

    Article  PubMed  CAS  Google Scholar 

  • Wald, D., Qin, J., Zhao, Z., Qian, Y., Naramura, M., Tian, L., Towne, J., et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling, Nat Immunol 4 (2003) 920–927.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Shao, Y., Bennett, T.A., Shankar, R.A., Wightman, P.D., Reddy, L.G. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem. 281 (2006) 37427–37434.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Chen, T., Han, C., He, D., Liu, H., An, H., Cai, Z., et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 110 (2007) 962–971.

    Article  PubMed  CAS  Google Scholar 

  • Wong, S.W., Kwon, M.J., Choi, A.M., Kim, H.P., Nakahira, K., Hwang, D.H. Fatty acids modulate Toll-like Receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 284 (2009) 27384–27392.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249 (1990) 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420 (2002) 324–329.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4 (2003) 1144–1150.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Liu, B., Dai, J., Srivastava, P.K., Zammit, D.J., Lefrancois, L., Li, Z. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26 (2007) 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418 (2002) 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Zweigner, J., Gramm, H.J., Singer, O.C., Wegscheider, K., Schumann, R.R. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes. Blood 2001, 98 (2001) 3800–3808.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne F. McGettrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McGettrick, A.F., O’Neill, L.A. (2010). Regulators of TLR4 Signaling by Endotoxins. In: Wang, X., Quinn, P. (eds) Endotoxins: Structure, Function and Recognition. Subcellular Biochemistry, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9078-2_7

Download citation

Publish with us

Policies and ethics