Skip to main content

Purification and Characterization of Lipopolysaccharides

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 53))

Abstract

Lipopolysaccharides are the major components on the surface of most Gram-negative bacteria, and recognized by immune cells as a pathogen-associated molecule. They can cause severe diseases like sepsis and therefore known as endotoxins. Lipopolysaccharide consists of lipid A, core oligosaccharide and O-antigen repeats. Lipid A is responsible for the major bioactivity of endotoxin. Because of their specific structure and amphipathic property, purification and analysis of lipopolysaccharides are difficult. In this chapter, we summarize the available approaches for extraction, purification and analysis of lipopolysaccharides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

LPS:

lipopolysaccharide

R-LPS:

rough type LPS

S-LPS:

smooth type LPS

PCP:

phenol, chloroform and petroleum ether

RNase:

ribonuclease

DNase I:

deoxyribonuclease I

SDS:

sodium dodecyl sulfate

SDS-PAGE:

sodium dodecyl sulfate-polyacylamide gel electrophoresis

DOC:

deoxycholate

CE:

capillary electrophoresis

FT-ICR MS:

Fourier-transform ion cyclotron resonance mass spectrometer

ESI MS:

electrospray ionization mass spectrometry

EtBr:

ethidium bromide

TAE:

triethylamine

TLR2:

Toll-like receptor 2

TLR4:

Toll-like receptor 4

TLC:

thin layer chromatography

CFU:

colony forming unit

References

  • Amano, K.I., Williams, J.C., Dasch, G.A. Structural properties of lipopolysaccharides from Rickettsia typhi and Rickettsia prowazekii and their chemical similarity to the lipopolysaccharide from Proteus vulgaris OX19 used in the Weil-Felix test. Infect Immun 66 (1998) 923–926.

    PubMed  CAS  Google Scholar 

  • Apicella, M.A. Isolation and characterization of lipopolysaccharides. Methods Mol Biol 431 (2008) 3–13.

    PubMed  CAS  Google Scholar 

  • Apicella, M.A., Griffiss, J.M., Schneider, H. Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol 235 (1994) 242–252.

    Article  PubMed  CAS  Google Scholar 

  • Babinski, K.J., Kanjilal, S.J., Raetz, C.R. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 277 (2002) 25947–25956.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E.G., Dyer, W.J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37 (1959) 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Brozek, K.A., Hosaka, K., Robertson, A.D., Raetz, C.R. Biosynthesis of lipopolysaccharide in Escherichia coli. Cytoplasmic enzymes that attach 3-deoxy-d-manno-octulosonic acid to lipid A. J Biol Chem 264 (1989) 6956–6966.

    PubMed  CAS  Google Scholar 

  • Byrd, W., Kadis, S. Structures and sugar compositions of lipopolysaccharides isolated from seven Actinobacillus pleuropneumoniae serotypes. Infect Immun 57 (1989) 3901–3906.

    PubMed  CAS  Google Scholar 

  • Carlson, R.W. Heterogeneity of Rhizobium lipopolysaccharides. J Bacteriol 158 (1984) 1012–1017.

    PubMed  CAS  Google Scholar 

  • Caroff, M., Tacken, A., Szabo, L. Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the “isolated lipid A” fragment of the Bordetella pertussis endotoxin. Carbohydr Res 175 (1988) 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos-Serra, L.R., Fernandez-Patron, C., Hardy, E., Huerta, V.A. procedure for protein elution from reverse-stained polyarcylamide gels applicable at the low picomole level: An alternative route to the preparation of low abundance proteins for microanalysis. Electrophoresis 17 (1996) 1564–1572.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos-Serra, L.R., Fernandez-Patron, C., Hardy, E., Santana, H., Huerta, V. High yield elution of proteins from sodium dodecyl sulfate-polyacrylamide gels at the low-picomole level. Application to N-terminal sequencing of a scarce protein and to in-solution biological activity analysis of on-gel renatured proteins. J Protein Chem 16 (1997) 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Chester, I.R., Meadow, P.M. Heterogeneity of the lipopolysaccharide from Pseudomonas aeruginosa. Eur J Biochem 58 (1975) 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Clementz, T., Zhou, Z., Raetz, C.R. Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem 272 (1997) 10353–10360.

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze, W., Leoff, C., Freshour, G., Noel, K.D., Carlson, R.W. Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 282 (2007) 17101–17113.

    Article  PubMed  Google Scholar 

  • Darveau, R.P., Hancock, R.E.W. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 155 (1983) 831–838.

    PubMed  CAS  Google Scholar 

  • Dubray, G., Bezard, G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119 (1982) 325–329.

    Article  PubMed  CAS  Google Scholar 

  • El Hamidi, A., Tirsoaga, A., Novikov, A., Hussein, A., Caroff, M. Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 46 (2005) 1773–1778.

    Article  PubMed  CAS  Google Scholar 

  • Fensom, A.H., Meadow, P.M. Evidence for two regions in the polysaccharide moiety of the lipopolysaccharide of Pseudomonas aeruginosa 8602. FEBS Lett 9 (1970) 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Fomsgaard, A., Conrad, R.S., Galanos, C., Shand, G.H., Hoiby, N. Comparative immunochemistry of lipopolysaccharides from typable and polyagglutinable Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis. J Clin Microbiol 26 (1988) 821–826.

    PubMed  CAS  Google Scholar 

  • Fomsgard, A., Freudenberg, M.A., Galanos, C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol 28 (1990) 2627–2631.

    Google Scholar 

  • Galanos, C., Lüderitz, O., Westphal, O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9 (1969) 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, H.S., Reynolds, C.M., Guan, Z., d Raetz, C.R. An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47 (2008) 2814–2825.

    Article  PubMed  CAS  Google Scholar 

  • Girardin, S.E., Boneca, I.G., Carneiro, L.A., Antignac, A., Jéhanno, M., Viala, J., Tedin, K., Taha, M.K., Labigne, A., Zähringer, U., Coyle, A.J., DiStefano, P.S., Bertin, J., Sansonetti, P.J., Philpott, D.J. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300 (2003) 1584–1587.

    Article  PubMed  CAS  Google Scholar 

  • Goebel, W.F., Binkley, F., Perlman, E. Studies on the Flexner group of dysentery bacilli. I. The specific antigens of Shigella paradysenteriae. J Exp Med 81 (1945) 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, E., Pupo, E., Castellanos-Serra, L., Reyes, J., Fernández-Patrón, C. Sensitive reverse staining of bacterial lipopolysaccharides on polyacrylamide gels by using zinc and imidazole salts. Anal Biochem 244 (1997) 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, E., Pupo, E., Santana, H., Guerra, M., Castellanos-Serra, L.R. Elution of lipopolysaccharides from polyacrylamide gels. Anal Biochem 259 (1998) 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Helander, I.M., Hurme, R., Haikara, A., Moran, A.P. Separation and characterization of two chemically distinct lipopolysaccharides in two Pectinatus species. J Bacteriol 174 (1992) 3348–3354.

    PubMed  CAS  Google Scholar 

  • Hickman, J., Ashwell, G. Isolation of a bacterial lipopolysaccharide from Xanthomonas campestris containing 3-acetamido-3,6-dideoxy-d-galactose and D-rhamnose. J Biol Chem 241 (1966) 1424–1428.

    PubMed  CAS  Google Scholar 

  • Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N., Weis, J.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165 (2000) 618–622.

    PubMed  CAS  Google Scholar 

  • Hitchcock, P.J. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. Infect Immun 46 (1984) 202–212.

    PubMed  CAS  Google Scholar 

  • Hitchcock, P.J., Brown, T.M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154 (1983) 269–277.

    PubMed  CAS  Google Scholar 

  • Hollingsworth, R.I., Lill-Elghanian, D.A. Isolation and characterization of the unusual lipopolysaccharide component, 2-amino-2-deoxy-2-N-(27-hydroxyoctacosanoyl)-3-O-(3-hydroxy-tetradecanoyl)-gluco-hexuronic acid, and its de-O-acylation product from the free lipid A of Rhizobium trifolii ANU843. J Biol Chem 264 (1989) 14039–14042.

    PubMed  CAS  Google Scholar 

  • Hubner, G., Lindner, B. Separation of R-form lipopolysaccharide and lipid A by CE-Fourier-transform ion cyclotron resonance MS. Electrophoresis 30 (2009) 1808–1816.

    Article  PubMed  Google Scholar 

  • Inzana, T.J., Apicella, M.A. Use of a bilayer stacking gel to improve resolution of lipopolysaccharides and lipooligosaccharides in polyacrylamide gels. Electrophoresis 20 (1999) 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Inzana, T.J., Pichichero, M.E. Lipopolysaccharide subtypes of Haemophilus influenzae type b from an outbreak of invasive disease. J Clin Microbiol 20 (1984) 145–150.

    PubMed  CAS  Google Scholar 

  • Jann, B., Reske, K., Jann, K. Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Eur J Biochem 60 (1975) 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K.G., Perry, M.B. Improved techniques for the preparation of bacterial lipopolysaccharides. Can J Microbiol 22 (1976) 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson, J.W., Lukacs, K.D. Free-zone electrophoresis in glass capillaries. Clin Chem 27 (1981) 1551–1553.

    PubMed  CAS  Google Scholar 

  • Karibian, D., Deprun, C., Caroff, M. Use of plasma desorption mass spectrometry in structural analysis of endotoxins: effects on lipid A of different acid treatments. Prog Clin Biol Res 392 (1995) 103–111.

    PubMed  CAS  Google Scholar 

  • Kasai, N., Nowotny, A. Endotoxic glycolipid from a heptoseless mutant of Salmonella minnesota. J Bacteriol 94 (1967) 1824–1836.

    PubMed  CAS  Google Scholar 

  • Kelly, J., Masoud, H., Perry, M.B., Richards, J.C., Thibault, P. Separation and characterization of O-deacylated lipooligosaccharides and glycans derived from Moraxella catarrhalis using capillary electrophoresis-electrospray mass spectrometry and tandem mass spectrometry. Anal Biochem 233 (1996) 15–30.

    Article  PubMed  CAS  Google Scholar 

  • Kido, N., Ohta, M., Kato, N. Detection of lipopolysaccharides by ethidium bromide staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Bacteriol 172 (1990) 1145–1147.

    PubMed  CAS  Google Scholar 

  • Kim, J.J., Phillips, N.J., Gibson, B.W., Griffiss, J.M., Yamasaki, R. Meningococcal group A lipooligosaccharides (LOS): preliminary structural studies and characterization of serotype-associated and conserved LOS epitopes. Infect Immun 62 (1994) 1566–1575.

    PubMed  CAS  Google Scholar 

  • Komuro, T., Galanos, C. Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450 (1988) 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Koval, S.F., Meadow, P.M. The isolation and characterization of lipopolysaccharide-defective mutants of Pseudomonas aeruginosa PAC1. J Gen Microbiol 98 (1977) 387–398.

    PubMed  CAS  Google Scholar 

  • Kropinski, A.M., Kuzio, J., Angus, B.L., Hancock, R.E. Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 21 (1982) 310–319.

    Article  PubMed  CAS  Google Scholar 

  • Lacroix, R.P., Duncan, J.R., Jenkins, R.P., Leitch, R.A., Perry, J.A., Richards, J.C. Structural and serological specificities of Pasteurella haemolytica lipopolysaccharides. Infect Immun 61 (1993) 170–181.

    PubMed  CAS  Google Scholar 

  • Lesse, A.J., Campagnari, A.A., Bittner, W.E., Apicella, M.A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126 (1990) 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Cox, A.D., Hood, D., Moxon, E.R., Richards, J.C. Application of capillary electrophoresis- electrospray-mass spectrometry to the separation and characterization of isomeric lipopolysaccharides of Neisseria meningitidis. Electrophoresis 25 (2004) 2017–2025.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Cox, A.D., Hood, D.W., Schweda, E.K., Moxon, E.R., Richards, J.C. Electrophoretic and mass spectrometric strategies for profiling bacterial lipopolysaccharides. Mol Biosyst 1 (2005a) 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Dzieciatkowska, M., Hood, D.W., Cox, A.D., Schweda, E.K., Moxon, E.R., Richards, J.C. Structural characterization of sialylated glycoforms of H. influenzae by electrospray mass spectrometry: fragmentation of protonated and sodiated O-deacylated lipopolysaccharides. Rapid Commun Mass Spectrom 21 (2007) 952–960.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Martin, A., Cox, A.D., Moxon, E.R., Richards, J.C., Thibault, P. Mapping bacterial glycolipid complexity using capillary electrophoresis and electrospray mass spectrometry. Methods Enzymol 405 (2005b) 369–397.

    Article  PubMed  CAS  Google Scholar 

  • Logan, S.M., Trust, T.J. Structural and antigenic heterogeneity of lipopolysaccharides of Campylobacter jejuni and Campylobacter coli. Infect Immun 45 (1984) 210–216.

    PubMed  CAS  Google Scholar 

  • Luderitz, O., Staub, A.M., Westphal, O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev 30 (1966) 192–255.

    PubMed  CAS  Google Scholar 

  • Lukasiewicz, J., Niedziela, T., Jachymek, W., Kenne, L., Lugowski, C. Structure of the lipid A-inner core region and biological activity of Plesiomonas shigelloides O54 (strain CNCTC 113/92) lipopolysaccharide. Glycobiology 16 (2006) 538–550.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, D.C., Leive, L. Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J Biol Chem 250 (1975) 2911–2919.

    PubMed  CAS  Google Scholar 

  • Muller-Loennies, S., Lindner, B., Brade, H. Structural analysis of oligosaccharides from lipopolysaccharide (LPS) of Escherichia coli K12 strain W3100 reveals a link between inner and outer core LPS biosynthesis. J Biol Chem 278 (2003) 34090–34101.

    Article  PubMed  Google Scholar 

  • Muller-Seitz, E., Jann, B., Jann, K. Degradation studies on the lipopolysaccharide from E. coli 071:K?:H12. Separation and investigation of O-specific and core polysaccharides. FEBS Lett 1 (1968) 311–314.

    Article  PubMed  Google Scholar 

  • Munford, R.S., Hall, C.L., Rick, P.D. Size heterogeneity of Salmonella typhimurium lipopolysaccharides in outer membranes and culture supernatant membrane fragments. J Bacteriol 144 (1980) 630–640.

    PubMed  CAS  Google Scholar 

  • Nishijima, M., Raetz, C.R. Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol. J Biol Chem 254 (1979) 7837–7844.

    PubMed  CAS  Google Scholar 

  • Noda, K., Kubota, K., Yamasaki, R. Separation of lipooligosaccharides by linear gradient gel electrophoresis. Anal Biochem 279 (2000) 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Nowotny, A., Cundy, K.R., Neale, N.L., Nowotny, A.M., Radvany, R., Thomas, S.P., Tripodi, D.J. Relation of structure to function in bacterial O-antigens. IV. Fractionation of the components. Ann NY Acad Sci 133 (1966) 586–603.

    Article  PubMed  CAS  Google Scholar 

  • Oertelt, C., Lindner, B., Skurnik, M., Holst, O. Isolation and structural characterization of an R-form lipopolysaccharide from Yersinia enterocolitica serotype O:8. Eur J Biochem 268 (2001) 554–564.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M.J. Studies on the Gram-Negative Cell Wall. I. Evidence for the Role of 2-Keto- 3-Deoxyoctonate in the Lipopolysaccharide of Salmonella Typhimurium. Proc Natl Acad Sci USA 50 (1963) 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Perez, G.I., Hopkins, J.A., Blaser, M.J. Antigenic heterogeneity of lipopolysaccharides from Campylobacter jejuni and Campylobacter fetus. Infect Immun 48 (1985) 528–533.

    PubMed  CAS  Google Scholar 

  • Peterson, A.A., McGroarty, E.J. High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota, and Escherichia coli. J Bacteriol 162 (1985) 738–745.

    PubMed  CAS  Google Scholar 

  • Prehm, P., Stirm, S., Jann, B., Jann, K. Cell-wall lipopolysaccharide from Escherichia coli B. Eur J Biochem 56 (1975) 41–55.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, M.M., Lastovica, A.J., Moran, A.P. Lipopolysaccharides from Campylobacter jejuni O:41 strains associated with Guillain-Barre syndrome exhibit mimicry of GM1 ganglioside. Infect Immun 66 (1998) 3649–3655.

    PubMed  CAS  Google Scholar 

  • Pupo, E., López, C.M., Alonso, M., Hardy, E. High-efficiency passive elution of bacterial lipopolysaccharides from polyacrylamide gels. Electrophoresis 21 (2000) 526–530.

    Article  PubMed  CAS  Google Scholar 

  • Pupo, E., Hardy, E. Isolation of smooth-type lipopolysaccharides to electrophoretic homogeneity. Electrophoresis 28 (2007) 2351–2357.

    Article  PubMed  CAS  Google Scholar 

  • Que, N.L., Lin, S., Cotter, R.J., Raetz, C.R. Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem 275 (2000) 28006–28016.

    PubMed  CAS  Google Scholar 

  • Qureshi, N., Honovich, J.P., Hara, H., Cotter, R.J., Takayama, K. Location of fatty acids in lipid A obtained from lipopolysaccharide of Rhodopseudomonas sphaeroides ATCC 17023. J Biol Chem 263 (1988) 5502–5504.

    PubMed  CAS  Google Scholar 

  • Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R.J., Takayama, K., Sievert, T.R., Rice, P.A., Lin, J.S., Golenbock, D.T. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J Biol Chem 272 (1997) 10594–10600.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, N., Mascagni, P., Ribi, E., Takayama, K. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J Biol Chem 260 (1985) 5271–5278.

    PubMed  CAS  Google Scholar 

  • Qureshi, N., Takayama, K., Ribi, E. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J Biol Chem 257 (1982) 11808–11815.

    PubMed  CAS  Google Scholar 

  • Raetz, C.R., Kennedy, E.P. Function of cytidine diphosphate-diglyceride and deoxycytidine diphosphate-diglyceride in the biogenesis of membrane lipids in Escherichia coli. J Biol Chem 248 (1973) 1098–1105.

    PubMed  CAS  Google Scholar 

  • Raetz, C.R., Purcell, S., Meyer, M.V., Qureshi, N., Takayama, K. Isolation and characterization of eight lipid A precursors from a 3-deoxy-d-manno-octylosonic acid-deficient mutant of Salmonella typhimurium. J Biol Chem 260 (1985) 16080–16088.

    PubMed  CAS  Google Scholar 

  • Reynolds, C.M., Raetz, C.R. Replacement of lipopolysaccharide with free lipid A molecules in Escherichia coli mutants lacking all core sugars. Biochemistry 48 (2009) 9627–9640.

    Article  PubMed  CAS  Google Scholar 

  • Ribi, E., Haskins, W.T., Laudy, M., Milner, K.C. Preparation and host-reactive properties of endotoxin with low content of nitrogen and lipid. J Exp Med 114 (1961) 647–663.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, M., Bryan, L.E., Hancock, R.E., McGroarty, E.J. Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 170 (1988) 512–521.

    PubMed  CAS  Google Scholar 

  • Robert, N.A., Gray, G.W., Wilkinson, S.G. Release of lipopolysaccharide during the preparation of cell walls of Pseudomonas aeruginosa. Biochim Biophys Acta 135 (1967) 1068–1071.

    Article  Google Scholar 

  • Rosner, M.R., Tang, J., Barzilay, I., Khorana, H.G. Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem 254 (1979) 5906–5917.

    PubMed  CAS  Google Scholar 

  • Shear, M.J. Effect of concentrate from B. prodigiosus filtrate on subcutaneous primary induced mouse tumors. Cancer Res 1 (1941)732–741.

    Google Scholar 

  • Temple, G.S., Ayling, P.D., Wilkinson, S.G. Isolation and characterization of a lipopolysaccharide-specific bacteriophage of Pseudomonas aeruginosa. Microbios 45 (1986) 81–91.

    PubMed  CAS  Google Scholar 

  • Tirsoaga, A., El Hamidi, A., Perry, M.B., Caroff, M., Novikov, A. A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element. J Lipid Res 48 (2007a) 2419–2427.

    Article  PubMed  CAS  Google Scholar 

  • Tirsoaga, A., Novikov, A., Adib-Conquy, M., Werts, C., Fitting, C., Cavaillon, J.M., Caroff, M. Simple method for repurification of endotoxins for biological use. Appl Environ Microbiol 73 (2007b) 1803–1808.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.M., Frasch, C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119 (1982) 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, J.C., Wang, C.S., Alaupovic, P. Degradative effect of phenol on endotoxin and lipopolysaccharide preparations from Serratia marcescens. J Bacteriol 117 (1974) 786–795.

    PubMed  CAS  Google Scholar 

  • Vilches, S., Canals, R., Wilhelms, M., Salo, M.T., Knirel, Y.A., Vinogradov, E., Merino, S., Tomas, J.M. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence. Microbiology 153 (2007) 2393–2404.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., McGrath, S.C., Cotter, R.J., Raetz, C.R. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF. J Biol Chem 281 (2006a) 9321–9330.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Ribeiro, A.A., Guan, Z., McGrath, S.C., Cotter, R.J., Raetz, C.R. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45 (2006b) 14427–14440.

    Article  PubMed  CAS  Google Scholar 

  • Westphal, O., Jann, K. Bacterial lipopolysaccharides. Extraction with phenol water and further applications of the procedure. In Whistler, R.L. (ed), Methods in Carbohydrate Chemistry. Academic, New York, NY (1965), pp. 83–91.

    Google Scholar 

  • Wober, W., Alaupovic, P. Studies on the protein moiety of endotoxin from Gram-negative bacteria. Characterization of the protein moiety isolated by acetic acid hydrolysis of endotoxin from Serratia marcescens 08. Eur J Biochem 19 (1971) 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Yildirim, H.H., Hood, D.W., Moxon, E.R., Schweda, E.K. Structural analysis of lipopolysaccharides from Haemophilus influenzae serotype f. Structural diversity observed in three strains. Eur J Biochem 270 (2003) 3153–3167.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, S.I., Amano, K.I., Shibata, Y., Nakajima, M., Suzuki, M., Hayashi, S., Fujii, N., Yokochi, T. Two distinct antigenic types of the polysaccharide chains of Helicobacter pylori lipopolysaccharides characterized by reactivity with sera from humans with natural infection. Infect Immun 68 (2000) 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Zahringer, U., Lindner, B., Knirel, Y.A., van den Akker, W.M., Hiestand, R., Heine, H., Dehio, C. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J Biol Chem 279 (2004) 21046–21054.

    Article  PubMed  Google Scholar 

  • Zdorovenko, E.L., Vinogradov, E., Zdorovenko, G.M., Lindner, B., Bystrova, O.V., Shashkov, A.S., Rudolph, K., Zahringer, U., Knirel, Y.A. Structure of the core oligosaccharide of a rough-type lipopolysaccharide of Pseudomonas syringae pv. phaseolicola. Eur J Biochem 271 (2004) 4968–4977.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, P., Chandan, V., Liu, X., Chan, K., Altman, E., Li, J. Microwave-assisted sample preparation for rapid and sensitive analysis of Helicobacter pylori lipid A applicable to a single colony. J Lipid Res 50 (2009) 1936–1944.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Lin, S., Cotter, R.J., Raetz, C.R. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-l-arabinose, phosphoethanolamine and palmitate. J Biol Chem 274 (1999) 18503–18514.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by grants from the National Natural Science Foundation of China (NSFC 30770114, NSFC30870074), the Program of State Key Laboratory of Food Science and Technology (SKLF-MB-200801), the 111 project (111-2-06), the Basic Research Programs of Jiangsu Province (BK2009003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, X., Zhang, C., Shi, F., Hu, X. (2010). Purification and Characterization of Lipopolysaccharides. In: Wang, X., Quinn, P. (eds) Endotoxins: Structure, Function and Recognition. Subcellular Biochemistry, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9078-2_2

Download citation

Publish with us

Policies and ethics