Skip to main content

Stem Cells in the Developing and Adult Nervous System

  • Chapter
  • First Online:
  • 1604 Accesses

Abstract

The fertilized egg is a totipotent stem cell that can produce all cell types of the organism, including the embryonic and the extraembryonic tissues. As development proceeds, cells lose their capacity to proliferate and differentiate into different cell types, and gain specialization. Interestingly, neural stem/progenitor cells exist not only during embryonic development, but also in the adult nervous system of mammals. Newborn neurons in the adult brain integrate into pre-existing neural circuits and exhibit functional similarity to neurons born during development. Normally, development of an organism proceeds irreversibly from embryo to adult with cells differentiating progressively toward specialized cell types. However, somatic cells can be artificially reprogrammed and returned to the naive state of pluripotency found in the early embryo. Advances in stem cell biology have provided new insights into development and regenerative medicine. Here, we summarize current views of stem cells during embryogenesis and adult neurogenesis. Finally, we also describe retinal development and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad, I., Tang, L., and Pham, H. (2000). Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270, 517–521.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, D., and Cepko, C. (1992). A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114, 947–957.

    CAS  PubMed  Google Scholar 

  • Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E., and Barsacchi, G. (1999). Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451–2460.

    CAS  PubMed  Google Scholar 

  • Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3, 728–739.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, H.A., McEwen, B.S., and Gould, E. (1995). Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15, 4687–4692.

    CAS  PubMed  Google Scholar 

  • Campbell, K.H., McWhir, J., Ritchie, W.A., and Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66.

    Article  CAS  PubMed  Google Scholar 

  • Cavodeassi, F., Carreira-Barbosa, F., Young, R.M., Concha, M.L., Allende, M.L., Houart, C., Tada, M., and Wilson, S.W. (2005). Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Wang, Q.L., Nie, Z., Sun, H., Lennon, G., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Zack, D.J. (1997). Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  • Chojnacki, A.K., Mak, G.K., and Weiss, S. (2009). Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?. Nat Rev Neurosci 10, 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Chow, R.L., Altmann, C.R., Lang, R.A., and Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development 126, 4213–4222.

    CAS  PubMed  Google Scholar 

  • Chuang, J.C., Mathers, P.H., and Raymond, P.A. (1999). Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84, 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Das, A.V., Mallya, K.B., Zhao, X., Ahmad, F., Bhattacharya, S., Thoreson, W.B., Hegde, G.V., and Ahmad, I. (2006). Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299, 283–302.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch, F., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17, 5046–5061.

    CAS  PubMed  Google Scholar 

  • Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4, 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, A.J., and Reh, T.A. (2001). Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4, 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, T., Kozak, C.A., and Cepko, C.L. (1997a). Rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci USA 94, 3088–3093.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, T., Morrow, E.M., and Cepko, C.L. (1997b). Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541.

    Article  CAS  PubMed  Google Scholar 

  • Ge, S., Goh, E.L., Sailor, K.A., Kitabatake, Y., Ming, G.L., and Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., and Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, S. (2005). Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23, 862–871.

    Article  CAS  PubMed  Google Scholar 

  • Gotz, M., and Huttner, W.B. (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6, 777–788.

    Article  PubMed  Google Scholar 

  • Gurdon, J.B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622–640.

    CAS  PubMed  Google Scholar 

  • Hartong, D.T., Berson, E.L., and Dryja, T.P. (2006). Retinitis pigmentosa. Lancet 368, 1795–1809.

    Article  CAS  PubMed  Google Scholar 

  • Haruta, M., Kosaka, M., Kanegae, Y., Saito, I., Inoue, T., Kageyama, R., Nishida, A., Honda, Y., and Takahashi, M. (2001). Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci 4, 1163–1164.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama, J., Bessho, Y., Katoh, K., Ookawara, S., Fujioka, M., Guillemot, F., and Kageyama, R. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou, A., Kelly, O.G., and Melton, D.A. (1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou, A., and Melton, D.A. (1994). Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Hirami, Y., Osakada, F., Takahashi, K., Okita, K., Yamanaka, S., Ikeda, H., Yoshimura, N., and Takahashi, M. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger, K., and Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development 136, 509–523.

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger, G.U., Rizk, P., Muriel, M.P., Duyckaerts, C., Oertel, W.H., Caille, I., and Hirsch, E.C. (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7, 726–735.

    Article  PubMed  Google Scholar 

  • Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J., Mech, B., Cimmarusti, V., Van Boemel, G., Dagnelie, G., and de Juan, E. (2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43, 2573–2581.

    Article  PubMed  Google Scholar 

  • Hyatt, G.A., Schmitt, E.A., Fadool, J.M., and Dowling, J.E. (1996). Retinoic acid alters photoreceptor development in vivo. Proc Natl Acad Sci USA 93, 13298–13303.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, H., Osakada, F., Watanabe, K., Mizuseki, K., Haraguchi, T., Miyoshi, H., Kamiya, D., Honda, Y., Sasai, N., Yoshimura, N., et al. (2005). Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 102, 11331–11336.

    Article  CAS  PubMed  Google Scholar 

  • Karl, M.O., Hayes, S., Nelson, B.R., Tan, K., Buckingham, B., and Reh, T.A. (2008). Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105, 19508–19513.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Lagutin, O., Zhu, C.C., Furuta, Y., Rowitch, D.H., McMahon, A.P., and Oliver, G. (2001). Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev Dyn 221, 342–349.

    Article  CAS  PubMed  Google Scholar 

  • Lagutin, O.V., Zhu, C.C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., Russell, H.R., McKinnon, P.J., Solnica-Krezel, L., and Oliver, G. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17, 368–379.

    Article  CAS  PubMed  Google Scholar 

  • Lai, K., Kaspar, B.K., Gage, F.H., and Schaffer, D.V. (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6, 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, T.M., Knecht, A.K., Smith, W.C., Stachel, S.E., Economides, A.N., Stahl, N., Yancopolous, G.D., and Harland, R.M. (1993). Neural induction by the secreted polypeptide noggin. Science 262, 713–718.

    Article  CAS  PubMed  Google Scholar 

  • Lamba, D.A., Gust, J., and Reh, T.A. (2009). Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell 4, 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.Y., Wroblewski, E., Philips, G.T., Stair, C.N., Conley, K., Reedy, M., Mastick, G.S., and Brown, N.L. (2005). Multiple requirements for Hes 1 during early eye formation. Dev Biol 284, 464–478.

    Article  CAS  PubMed  Google Scholar 

  • Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., and Gage, F.H. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, Q., Haydar, T.F., and Bordey, A. (2005). Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8, 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  • Lois, C., and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  • Lois, C., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science 271, 978–981.

    Article  CAS  PubMed  Google Scholar 

  • Lund, R.D., Wang, S., Klimanskaya, I., Holmes, T., Ramos-Kelsey, R., Lu, B., Girman, S., Bischoff, N., Sauve, Y., and Lanza, R. (2006). Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199.

    Article  CAS  PubMed  Google Scholar 

  • MacLaren, R.E., Pearson, R.A., MacNeil, A., Douglas, R.H., Salt, T.E., Akimoto, M., Swaroop, A., Sowden, J.C., and Ali, R.R. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Masse, K., Bhamra, S., Eason, R., Dale, N., and Jones, E.A. (2007). Purine-mediated signalling triggers eye development. Nature 449, 1058–1062.

    Article  CAS  PubMed  Google Scholar 

  • Mathers, P.H., Grinberg, A., Mahon, K.A., and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni, F., Novelli, E., and Strettoi, E. (2008). Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28, 14282–14292.

    Article  CAS  PubMed  Google Scholar 

  • Merkle, F.T., Mirzadeh, Z., and Alvarez-Buylla, A. (2007). Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384.

    Article  CAS  PubMed  Google Scholar 

  • Mirescu, C., and Gould, E. (2006). Stress and adult neurogenesis. Hippocampus 16, 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S.J., and Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  • Morrow, E.M., Furukawa, T., Lee, J.E., and Cepko, C.L. (1999). NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D.W., Glinka, A., Grinberg, A., Huang, S.P., et al. (2001). Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1, 423–434.

    Article  CAS  PubMed  Google Scholar 

  • Nishida, A., Furukawa, A., Koike, C., Tano, Y., Aizawa, S., Matsuo, I., and Furukawa, T. (2003). Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6, 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  • Niwa, H. (2007). How is pluripotency determined and maintained?. Development 134, 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., and Gruss, P. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055.

    CAS  PubMed  Google Scholar 

  • Onuma, Y., Takahashi, S., Asashima, M., Kurata, S., and Gehring, W.J. (2002). Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci USA 99, 2020–2025.

    Article  CAS  PubMed  Google Scholar 

  • Ooto, S., Akagi, T., Kageyama, R., Akita, J., Mandai, M., Honda, Y., and Takahashi, M. (2004). Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101, 13654–13659.

    Article  CAS  PubMed  Google Scholar 

  • Osakada, F., Hirami, Y., and Takahashi, K. (2009a). Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26, 309–346.

    Google Scholar 

  • Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., Akaike, A., Sasai, Y., and Takahashi, M. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Osakada, F., Ikeda, H., Sasai, Y., and Takahashi, M. (2009b). Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4, 811–824.

    Article  CAS  PubMed  Google Scholar 

  • Osakada, F., Jin, Z.B., Hirami, Y., Ikeda, H., Danjyo, T., Watanabe, K., Sasai, Y., and Takahashi, M. (2009c). In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122, 3169–3179.

    Article  CAS  PubMed  Google Scholar 

  • Osakada, F., Ooto, S., Akagi, T., Mandai, M., Akaike, A., and Takahashi, M. (2007). Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27, 4210–4219.

    Article  CAS  PubMed  Google Scholar 

  • Osakada, F., and Takahashi, M. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt pathway and transplantation therapy as strategies for retinal repair. J Pharmacol Sci 109, 168–173.

    Article  CAS  PubMed  Google Scholar 

  • Rattner, A., and Nathans, J. (2006). Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7, 860–872.

    Article  CAS  PubMed  Google Scholar 

  • Reh, T.A., and Nagy, T. (1987). A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev Biol 122, 471–482.

    Article  CAS  PubMed  Google Scholar 

  • Reh, T.A., Nagy, T., and Gretton, H. (1987). Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330, 68–71.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, B.A., Tetzlaff, W., and Weiss, S. (1992). A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 4565–4574.

    CAS  PubMed  Google Scholar 

  • Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Sanai, N., Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel-Garcia Verdugo, J., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744.

    Article  CAS  PubMed  Google Scholar 

  • Sasai, Y., Lu, B., Steinbeisser, H., and De Robertis, E.M. (1995). Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L.K., and De Robertis, E.M. (1994). Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Sun, G. (2006). Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11, 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., Palmer, T.D., Takahashi, J., and Gage, F.H. (1998). Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12, 340–348.

    Article  CAS  PubMed  Google Scholar 

  • Tropepe, V., Coles, B.L., Chiasson, B.J., Horsford, D.J., Elia, A.J., McInnes, R.R., and van der Kooy, D. (2000). Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  • van Praag, H., Kempermann, G., and Gage, F.H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266–270.

    Article  PubMed  Google Scholar 

  • Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Wan, J., Zheng, H., Xiao, H.L., She, Z.J., and Zhou, G.M. (2007). Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363, 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Warner-Schmidt, J.L., and Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, S. (2009). Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52.

    Article  CAS  PubMed  Google Scholar 

  • Young, T.L., and Cepko, C.L. (2004). A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41, 867–879.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Zuber, M.E., Gestri, G., Viczian, A.S., Barsacchi, G., and Harris, W.A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yoshiki Sasai (RIKEN) and Akinori Akaike (Kyoto University) for their continued support and challenging discussions, and members of the Takahashi laboratory, the Sasai laboratory and the Akaike laboratory for stimulating discussions. This study was supported by Grants-in-Aid from MEXT and the Leading Project (M.T.), and by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Kanae Foundation for the Promotion of Medical Science, the Uehara Memorial Foundation, and the Naito Foundation (F.O.). We apologize to those authors whose articles, although relevant to this subject, have not been cited in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumitaka Osakada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Osakada, F., Takahashi, M. (2011). Stem Cells in the Developing and Adult Nervous System. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_5

Download citation

Publish with us

Policies and ethics