Skip to main content

Muscle and Ligament Regeneration

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Muscle injury and degenerative muscle disease is a disabling condition in sport medicine and a challenging problem in orthopedic surgery. Upon traumatic or degenerative changes in the structure of the muscle, regeneration befalls mainly by increased proliferation of satellite cells. If the injury is extensive fibrosis and scar tissue formation occurs. Till now various alternative therapeutic ways have been proposed to boost muscle regeneration. These methods include the use of growth factors, antioxidative therapy, cell based therapy and cell transplantation as well as the use of scaffolds. Growth factors, antioxidative substances and endogenous polypeptides can not only influence but also control the natural repair processes by acting on different intracellular pathways. Cell orientated therapies have been popular in muscle regeneration mainly because small quantities of cells are needed to achieve therapeutic effects. Transplantation of stem cells, myoblasts and genetically modified cells has been used after injury to restore muscle structure and function. Furthermore scaffolds have been used to repair muscle defects and to generate new muscle fibers. Similar approaches have been made for regeneration of ligaments. There are a number of cell sources that are potentially helpful for cell mediated tissue regeneration. Scaffolds provide temporary mechanical support and can carry cells which promote the ligament regeneration. Furthermore growth factors can be used to stimulate ligament healing and accelerate regeneration mainly by modulating the proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiel D, Kleiner J B, Roux R D, et al. (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4: 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Arai C, Ohnuki Y, Umeki D, et al. (2006) Effects of clenbuterol and cyclosporin A on the myosin heavy chain mRNA level and the muscle mass in rat masseter. J Physiol Sci 56: 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Armour J, Tyml K, Lidington D, et al. (2001) Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol 90: 795–803.

    CAS  PubMed  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218: 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Barton E R, Morris L, Musaro A, et al. (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Baskin C R, Hinchcliff K W, DiSilvestro R A, et al. (2000) Effects of dietary antioxidant supplementation on oxidative damage and resistance to oxidative damage during prolonged exercise in sled dogs. Am J Vet Res 61: 886–891.

    Article  CAS  PubMed  Google Scholar 

  • Bolcal C, Yildirim V, Doganci S, et al. (2007) Protective effects of antioxidant medications on limb ischemia reperfusion injury. J Surg Res 139: 274–279.

    Article  CAS  PubMed  Google Scholar 

  • Caplan A I (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Charge S B and Rudnicki M A (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238.

    Article  CAS  PubMed  Google Scholar 

  • Ciciliot S and Schiaffino S (2009) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des [Epub ahead of print].

    Google Scholar 

  • Cooper J A, Lu H H, Ko F K, et al. (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26: 1523–1532.

    Article  CAS  PubMed  Google Scholar 

  • Corbel S Y, Lee A, Yi L, et al. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F, et al. (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160: 909–918.

    Article  PubMed  Google Scholar 

  • Deehan D J and Cawston T E (2005) The biology of integration of the anterior cruciate ligament. J Bone Joint Surg Br 87: 889–895.

    Article  CAS  PubMed  Google Scholar 

  • DesRosiers E A, Yahia L and Rivard C H (1996) Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res 14: 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, Ishikawa H, Itokazu Y, et al. (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314–317.

    Article  CAS  PubMed  Google Scholar 

  • Evans W J (2000) Vitamin E, vitamin C, and exercise. Am J Clin Nutr 72: 647 S–652 S.

    CAS  PubMed  Google Scholar 

  • Fan H, Liu H, Toh S L, et al. (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30: 4967–4977.

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Liu H, Wong E J, et al. (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29: 3324–3337.

    Article  CAS  PubMed  Google Scholar 

  • Farini A, Razini P, Erratico S, et al. (2009) Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 221: 526–534.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279: 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Pagano S F, Gritti A, et al. (2000) Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci 22: 86–95.

    Article  CAS  PubMed  Google Scholar 

  • Grefte S, Kuijpers-Jagtman A M, Torensma R, et al. (2007) Skeletal muscle development and regeneration. Stem Cells Dev 16: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Blau H M and Kunkel L M (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3: 970–977.

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Pavlath G K, Lanctot A M, et al. (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356: 435–438.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand K A, Woo S L, Smith D W, et al. (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 26: 549–554.

    CAS  Google Scholar 

  • Hill E, Boontheekul T and Mooney D J (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12: 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  • Hill E, Boontheekul T and Mooney D J (2006) Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci U S A 103: 2494–2499.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y C, Dennis R G, Larkin L, et al. (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98: 706–713.

    Article  PubMed  Google Scholar 

  • Husmann I, Soulet L, Gautron J, et al. (1996) Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev 7: 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Ignatius A and Durselen L (2009) [Possibilities and limits in tissue engineering of the anterior cruciate ligament.]. Orthopade 38: 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  • Irintchev A, Langer M, Zweyer M, et al. (1997) Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol 500 (Pt 3): 775–785.

    CAS  PubMed  Google Scholar 

  • Israeli D, Benchaouir R, Ziaei S, et al. (2004) FGF6 mediated expansion of a resident subset of cells with SP phenotype in the C2C12 myogenic line. J Cell Physiol 201: 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Järvinen T A, Järvinen T L, Kääriäinen M, et al. (2005) Muscle injuries: biology and treatment. Am J Sports Med 33: 745–764.

    Article  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, et al. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30: 896–904.

    Article  CAS  PubMed  Google Scholar 

  • Kamelger F S, Marksteiner R, Margreiter E, et al. (2004) A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 25: 1649–1655.

    Article  CAS  PubMed  Google Scholar 

  • Karalaki M, Fili S, Philippou A, et al. (2009) Muscle regeneration: cellular and molecular events. In Vivo 23: 779–796.

    CAS  PubMed  Google Scholar 

  • Kearns S R, Daly A F, Sheehan K, et al. (2004) Oral vitamin C reduces the injury to skeletal muscle caused by compartment syndrome. J Bone Joint Surg Br 86: 906–911.

    Article  CAS  PubMed  Google Scholar 

  • Kim E K and Hong J P (2007) The effect of recombinant human erythropoietin on ischemia-reperfusion injury: an experimental study in a rat TRAM flap model. Plast Reconstr Surg 120: 1774–1781.

    Article  CAS  PubMed  Google Scholar 

  • Kon M, Kimura F, Akimoto T, et al. (2007) Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev 13: 76–88.

    PubMed  Google Scholar 

  • Krampera M, Franchini M, Pizzolo G, et al. (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5: 120–129.

    PubMed  Google Scholar 

  • LaBarge M A and Blau H M (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589–601.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang L, Liu K, et al. (2009) Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc Res.

    Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493–495.

    Article  CAS  PubMed  Google Scholar 

  • McKay B R, O’Reilly C E, Phillips S M, et al. (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586: 5549–5560.

    Article  CAS  PubMed  Google Scholar 

  • Mendell J R, Kissel J T, Amato A A, et al. (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333: 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day C S, et al. (1999) Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament. Tissue Eng 5: 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P O and Pavlath G K (2002) Multiple roles of calcineurin in skeletal muscle growth. Clin Orthop Relat Res S197–202.

    Google Scholar 

  • Motohashi N, Uezumi A, Yada E, et al. (2008) Muscle CD31(-) CD45(-) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am J Pathol 173: 781–791.

    Article  CAS  PubMed  Google Scholar 

  • Mourkioti F and Rosenthal N (2008) NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med 86: 747–759.

    Article  CAS  PubMed  Google Scholar 

  • Muguruma Y, Reyes M, Nakamura Y, et al. (2003) In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells. Exp Hematol 31: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Goto K, Morioka S, et al. (2009) Administration of granulocyte colony-stimulating factor facilitates the regenerative process of injured mice skeletal muscle via the activation of Akt/GSK3alphabeta signals. Eur J Appl Physiol 105: 643–651.

    Article  CAS  PubMed  Google Scholar 

  • Oestern H J and Tscherne H (1983) [Physiopathology and classification of soft tissue lesion]. Hefte Unfallheilkd 162: 1–10.

    CAS  PubMed  Google Scholar 

  • Otto A, Collins-Hooper H and Patel K (2009) The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 215: 477–497.

    Article  CAS  PubMed  Google Scholar 

  • Peterson J M and Guttridge D C (2008) Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 27: 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Price F D, Kuroda K and Rudnicki M A (2007) Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 1772: 272–283.

    CAS  PubMed  Google Scholar 

  • Qu Z, Balkir L, van Deutekom J C, et al. (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142: 1257–1267.

    Article  CAS  PubMed  Google Scholar 

  • Reznick A Z, Witt E, Matsumoto M, et al. (1992) Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem Biophys Res Commun 189: 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A M, Pisani D, Dechesne C A, et al. (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201: 1397–1405.

    Article  CAS  PubMed  Google Scholar 

  • Rotter R, Menshykova M, Winkler T, et al. (2008) Erythropoietin improves functional and histological recovery of traumatized skeletal muscle tissue. J Orthop Res 26: 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  • Saxena A K, Marler J, Benvenuto M, et al. (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5: 525–532.

    Article  CAS  PubMed  Google Scholar 

  • Saxena A K, Willital G H and Vacanti J P (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11: 275–281.

    CAS  PubMed  Google Scholar 

  • Sherwood R I, Christensen J L, Weissman I L, et al. (2004) Determinants of skeletal muscle contributions from circulating cells, bone marrow cells, and hematopoietic stem cells. Stem Cells 22: 1292–1304.

    Article  PubMed  Google Scholar 

  • Singleton J R and Feldman E L (2001) Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis 8: 541–554.

    Article  CAS  PubMed  Google Scholar 

  • Stratos I, Rotter R, Eipel C, et al. (2007) Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats. Journal of applied physiology (Bethesda, Md : 1985) 103: 1857–1863.

    Article  CAS  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, et al. (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438.

    Article  CAS  PubMed  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M, et al. (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114: 182–195.

    CAS  PubMed  Google Scholar 

  • Wagner K R (2005) Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 17: 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Warren J A, Jenkins R R, Packer L, et al. (1992) Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 72: 2168–2175.

    CAS  PubMed  Google Scholar 

  • Wernig A, Zweyer M and Irintchev A (2000) Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522 Pt 2: 333–345.

    Article  CAS  PubMed  Google Scholar 

  • Woo S L, Jia F, Zou L, et al. (2004) Functional tissue engineering for ligament healing: potential of antisense gene therapy. Ann Biomed Eng 32: 342–351.

    Article  PubMed  Google Scholar 

  • Yimlamai T, Dodd S L, Borst S E, et al. (2005) Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. J Appl Physiol 99: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • You T, Goldfarb A H, Bloomer R J, et al. (2005) Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. Can J Appl Physiol 30: 677–689.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mittlmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Mittlmeier, T., Stratos, I. (2011). Muscle and Ligament Regeneration. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_38

Download citation

Publish with us

Policies and ethics