Skip to main content

Constraints to Articular Cartilage Regeneration

  • Chapter
  • First Online:

Abstract

The glassy translucent material found at the ends of bones, within synovial joints, is termed articular cartilage. While healthy, it provides a low-friction bearing surface, preventing bone-to-bone contact, and to an extent, absorb shock during vigorous activities. However, when damaged could lead to pain, deformity and reduced mobility; the social impact of which, entails high costs in terms of therapeutic treatments and loss of income. The present chapter reviews the common knowledge of the constraints to articular cartilage regeneration; namely cartilage structure, composition and major diseases. The first of the three sections detail the major constituents of the tissue and their structural organisation; the tissues mechanical properties, and ends with a brief description of how these features change in an unhealthy cartilage; be it mechanical or disease. In the second section, both clinical and academic approaches are pooled together, to review the current strategies in restoring health to joints with diseased or damaged cartilage. The final section highlights the fact that progression of cartilage disease affects not only the cartilage, but its underlying bone. The implications of the subchondral bone in the propagation of cartilage degeneration are discussed, and finally, their considerations in cartilage defect healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altman, R.D., Kates, J., Chun, L.E., Dean, D.D., and Eyre, D. (1992). Preliminary observations of chondral abrasion in a canine model. Annals of the Rheumatic Diseases 51, 1056–1062.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M.A., Payne, J.T., Kreeger, J.M., Wagner-Mann, C.C., Schmidt, D.A., and Mann, F.A. (1993). Effects of intra-articular chlorhexidine diacetate lavage on the stifle in healthy dogs. American Journal of Veterinary Research 54, 1784–1789.

    CAS  PubMed  Google Scholar 

  • Ateshian, G.A., and Wang, H. (1997). Rolling resistance of articular cartilage due to interstitial fluid flow. Proceedings of the Institution of Mechanical Engineers 211, 419–424.

    Article  CAS  Google Scholar 

  • Ayad, S., Kwan, A.P., and Grant, M.E. (1987). Partial characterization of type X collagen from bovine growth-plate cartilage. Evidence that type X collagen is processed in vivo. FEBS Letters 220, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Bakay, A., Csonge, L., Papp, G., and Fekete, L. (1998). Osteochondral resurfacing of the knee joint with allograft. Clinical analysis of 33 cases. International Orthopaedics 22, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Barnewitz, D., Endres, M., Kruger, I., Becker, A., Zimmermann, J., Wilke, I., Ringe, J., Sittinger, M., and Kaps, C. (2006). Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials 27, 2882–2889.

    Article  CAS  PubMed  Google Scholar 

  • Beiser, I.H., and Kanat, I.O. (1990). Subchondral bone drilling: a treatment for cartilage defects. The Journal of foot Surgery 29, 595–601.

    CAS  PubMed  Google Scholar 

  • Bell, R.S., Davis, A., Allan, D.G., Langer, F., Czitrom, A.A., and Gross, A.E. (1994). Fresh osteochondral allografts for advanced giant cell tumors at the knee. The Journal of arthroplasty 9, 603–609.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, G.A., and Bauer, W. (1935). Further studies concerning the repair of articular cartilage in dog joints. The Journal of Bone and Joint Surgery -American Volume 17, 141–150.

    Google Scholar 

  • Bentley, G., Biant, L.C., Carrington, R.W., Akmal, M., Goldberg, A., Williams, A.M., Skinner, J.A., and Pringle, J. (2003). A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. The Journal of Bone and Joint Surgery 85, 223–230.

    Article  CAS  Google Scholar 

  • Benya, P.D., Brown, P.D., and Padilla, S.R. (1988). Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. The Journal of Cell Biology 106, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Boot-Handford, R.P., Tuckwell, D.S., Plumb, D.A., Rock, C.F., and Poulsom, R. (2003). A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. The Journal of Biological Chemistry 278, 31067–31077.

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester, S.J., Beckers, J.M., Kuijer, R., van der Linden, A.J., and Bulstra, S.K. (1997). Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. International Orthopaedics 21, 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Breinan, H.A., Minas, T., Hsu, H.P., Nehrer, S., Shortkroff, S., and Spector, M. (2001). Autologous chondrocyte implantation in a canine model: change in composition of reparative tissue with time. Journal of Orthopaedic Research 19, 482–492.

    Article  CAS  PubMed  Google Scholar 

  • Brinkhaus, B., Witt, C.M., Jena, S., Linde, K., Streng, A., Hummelsberger, J., Irnich, D., Hammes, M., Pach, D., Melchart, D., et al. (2007). Physician and treatment characteristics in a randomised multicentre trial of acupuncture in patients with osteoarthritis of the knee. Complementary Therapies in Medicine 15, 180–189.

    Article  CAS  PubMed  Google Scholar 

  • Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine 331, 889–895.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T.D., and Singerman, R.J. (1986). Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. Journal of Biomechanics 19, 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter, J.A. (1998). Articular cartilage: injuries and potential for healing. The Journal of Orthopaedic and Sports Physical Therapy 28, 192–202.

    CAS  PubMed  Google Scholar 

  • Buckwalter, J.A., and Mankin, H.J. (1997). Articular Cartilage. Part I: tissue design and ­chondrocyte-matrix interactions. The Journal of Bone and Joint Surgery (American) 79A, 600–611.

    Google Scholar 

  • Buckwalter, J.A., and Mankin, H.J. (1998). Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional Course Lectures 47, 487–504.

    CAS  PubMed  Google Scholar 

  • Buckwalter, J.A., Mankin, H.J., and Grodzinsky, A.J. (2005). Articular cartilage and osteoarthritis. Instructional Course Lectures 54, 465–480.

    PubMed  Google Scholar 

  • Buckwalter, J.A., Rosenberg, L.C., and Ungar, R. (1987). Changes in proteoglycan aggregates during cartilage mineralization. Calcified Tissue International 41, 228–236.

    Article  CAS  PubMed  Google Scholar 

  • Bukowski, E.L., Conway, A., Glentz, L.A., Kurland, K., and Galantino, M.L. (2006). The effect of iyengar yoga and strengthening exercises for people living with osteoarthritis of the knee: a case series. International Quarterly of Community Health Education 26, 287–305.

    Article  PubMed  Google Scholar 

  • Buschmann, M.D., Gluzband, Y.A., Grodzinsky, A.J., and Hunziker, E.B. (1995). Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. Journal of Cell Science 108 (Pt 4), 1497–1508.

    CAS  PubMed  Google Scholar 

  • Butnariu-Ephrat, M., Robinson, D., Mendes, D.G., Halperin, N., and Nevo, Z. (1996). Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clinical Orthopaedics and Related Research 330, 234–243.

    Article  PubMed  Google Scholar 

  • Calandruccio, R.A., and Gilmer, W.S.J.R. (1962). Proliferation, regeneration, and repair of articular cartilage of immature animals. The Journal of Bone and Joint Surgery -American Volume 44, 431–455.

    Google Scholar 

  • Campbell, C.J. (1969). The healing of cartilage defects. Clinical Orthopaedics and Related Research 64, 45–63.

    Google Scholar 

  • Chang, R.W., Falconer, J., Stulberg, S.D., Arnold, W.J., Manheim, L.M., and Dyer, A.R. (1993). A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee. Arthritis and Rheumatism 36, 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Cheifetz, S., Bassols, A., Stanley, K., Ohta, M., Greenberger, J., and Massague, J. (1988). Heterodimeric transforming growth factor beta. Biological properties and interaction with three types of cell surface receptors. The Journal of Biological Chemistry 263, 10783–10789.

    CAS  PubMed  Google Scholar 

  • Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M.D., Hoemann, C.D., Leroux, J.C., Atkinson, B.L., Binette, F., and Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21, 2155–2161.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, T.T., Bader, D.L., and Lee, D.A. (2001). Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL-1beta-stimulated chondrocytes cultured in agarose constructs. Biochemical and Biophysical Research Communications 285, 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, T.T., Bader, D.L., Shelton, J.C., and Lee, D.A. (2003). Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Archives of Biochemistry and Biophysics 417, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J.M., and Huber, J.D. (1990). The structure of the human subchondral plate. The Journal of Bone and Joint Surgery 72, 866–873.

    CAS  Google Scholar 

  • Clarke, I.C. (1971). Articular cartilage: a review and scanning electron microscope study. 1. The interterritorial fibrillar architecture. The Journal of Bone and Joint Surgery 53, 732–750.

    CAS  Google Scholar 

  • Cohen, J., and Lacroix, P. (1955). Bone and cartilage formation by periosteum: assay of experimental autogenous grafts. The Journal of Bone and Joint Surgery -American Volume 37-A, 717–730.

    CAS  PubMed  Google Scholar 

  • Cohen, S.B., Meirisch, C.M., Wilson, H.A., and Diduch, D.R. (2003). The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 24, 2653–2660.

    Article  CAS  PubMed  Google Scholar 

  • Comper, W.D. (1996). Extracellular Matrix (Harwood Academic Publishers).

    Google Scholar 

  • Convery, F.R., Akeson, W.H., and Keown, G.H. (1972). The repair of large osteochondral defects. An experimental study in horses. Clinical Orthopaedics and Related Research 82, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, C., Cushnaghan, J., Kirwan, J.R., Dieppe, P.A., Rogers, J., McAlindon, T., and McCrae, F. (1992). Radiographic assessment of the knee joint in osteoarthritis. Annals of the Rheumatic Diseases 51, 80–82.

    Article  CAS  PubMed  Google Scholar 

  • Dahmer, S., and Schiller, R.M. (2008). Glucosamine. American Family Physician 78, 471–476.

    PubMed  Google Scholar 

  • Dehne, T., Karlsson, C., Ringe, J., Sittinger, M., and Lindahl, A. (2009). Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Research & Therapy 11, R133.

    Article  CAS  Google Scholar 

  • DePalma, A.F., McKeever, C.D., and Subin, D.K. (1966). Process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine. Clinical Orthopaedics and Related Research 48, 229–242.

    CAS  PubMed  Google Scholar 

  • Duda, G.N., Eilers, M., Loh, L., Hoffman, J.E., Kaab, M., and Schaser, K. (2001). Chondrocyte death precedes structural damage in blunt impact trauma. Clinical Orthopaedics and Related Research 393,302–309.

    Article  PubMed  Google Scholar 

  • Duda, G.N., Maldonado, Z.M., Klein, P., Heller, M.O., Burns, J., and Bail, H. (2005). On the influence of mechanical conditions in osteochondral defect healing. Journal of Biomechanics 38, 843–851.

    Article  PubMed  Google Scholar 

  • Eckstein, F., Lemberger, B., Stammberger, T., Englmeier, K.H., and Reiser, M. (2000). Patellar cartilage deformation in vivo after static versus dynamic loading. Journal of Biomechanics 33, 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Eckstein, F., Tieschky, M., Faber, S., Englmeier, K.H., and Reiser, M. (1999). Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anatomy and Embryology 200, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Elmore, S.M., Sokoloff, L., Norris, G., and Carmeci, P. (1963). Nature of “imperfect” elasticity of articular cartilage. Journal of Applied Physiology 18, 393–396.

    Google Scholar 

  • Eyre, D.R. (2004). Collagens and cartilage matrix homeostasis. Clinical Orthopaedics and Related Research 427, S118-122.

    Article  Google Scholar 

  • Eyre, D.R., Jiann-Jiu, W., and Woods, P. (1992). Cartilage-Specific Collagens, Structural Studies. In: Articular Cartilage and Osteoarthritis, K.E. Kuettner, R. Schleyerbach, J.G. Peyron, and V.C. Hascall, eds. (New York, USA, Ravens Press Ltd).

    Google Scholar 

  • Fazzalari, N.L., and Parkinson, I.H. (1997). Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. Journal of Bone and Mineral Research 12, 632–640.

    Article  CAS  PubMed  Google Scholar 

  • Felson, D.T., and Zhang, Y. (1998). An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis and Rheumatism 41, 1343–1355.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, P.M., Natarajan, R.N., Kimura, J.H., and Andriacchi, T.P. (1994). Chondrocyte cells respond mechanically to compressive loads. Journal of Orthopaedic Research 12, 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Frenkel, S.R., Toolan, B., Menche, D., Pitman, M.I., and Pachence, J.M. (1997). Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. The Journal of Bone and Joint Surgery 79, 831–836.

    Article  CAS  Google Scholar 

  • Friedenstein, A.J., Gorskaja, J.F., and Kulagina, N.N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology 4, 267–274.

    CAS  PubMed  Google Scholar 

  • Frisbie, D.D., Trotter, G.W., Powers, B.E., Rodkey, W.G., Steadman, J.R., Howard, R.D., Park, R.D., and McIlwraith, C.W. (1999). Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Veterinary Surgery 28, 242–255.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, J.R., Hannouche, D., Terada, S., Zand, S., Vacanti, J.P., and Fauza, D.O. (2005). Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23, 958–964.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, T., Eyre, D.R., Koide, S., and Glimcher, M.J. (1980). Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. The Journal of Bone and Joint Surgery -American Volume 62, 79–89.

    CAS  PubMed  Google Scholar 

  • Giannini, S., Buda, R., Grigolo, B., and Vannini, F. (2001). Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot & ankle international/American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society 22, 513–517.

    CAS  Google Scholar 

  • Gibson, J.N., White, M.D., Chapman, V.M., and Strachan, R.K. (1992). Arthroscopic lavage and debridement for osteoarthritis of the knee. The Journal of Bone and Joint Surgery 74, 534–537.

    CAS  Google Scholar 

  • Gillespie, W.J., and O’Connell, D.L. (1992). Arthroscopic lavage of osteoarthritic knees. The Journal of Bone and Joint Surgery 74, 788–789.

    Google Scholar 

  • Goldman, R.T., Scuderi, G.R., and Kelly, M.A. (1997). Arthroscopic treatment of the degenerative knee in older athletes. Clinics in Sports Medicine 16, 51–68.

    Article  CAS  PubMed  Google Scholar 

  • Grande, D.A., Halberstadt, C., Naughton, G., Schwartz, R., and Manji, R. (1997). Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. Journal of Biomedical Materials Research 34, 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Grande, D.A., Mason, J., Light, E., and Dines, D. (2003). Stem cells as platforms for delivery of genes to enhance cartilage repair. The Journal Bone of Joint and Surgery -American Volume 85-A Suppl 2, 111–116.

    PubMed  Google Scholar 

  • Grant M. E., Ayad S., Kwan A. P. L., Bates G. P., Thomas J. T., and J., M. (1988). The structure and synthesis of cartilage collagens. In: Control of Tissue Damage, A.M. Glauert, ed., pp. 3–28.

    Google Scholar 

  • Grigolo, B., Roseti, L., Fiorini, M., Fini, M., Giavaresi, G., Aldini, N.N., Giardino, R., and Facchini, A. (2001). Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials 22, 2417–2424.

    Article  CAS  PubMed  Google Scholar 

  • Grynpas, M.D., Alpert, B., Katz, I., Lieberman, I., and Pritzker, K.P. (1991). Subchondral bone in osteoarthritis. Calcified Tissue International 49, 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W.Y., Lai, W.M., and Mow, V.C. (1997). A triphasic analysis of negative osmotic flows through charged hydrated soft tissues. Journal of Biomechanics 30, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Guevremont, M., Martel-Pelletier, J., Massicotte, F., Tardif, G., Pelletier, J.P., Ranger, P., Lajeunesse, D., and Reboul, P. (2003). Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. Journal of Bone and Mineral Research 18, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  • Guilak, F., Jones, W.R., Ting-Beall, H.P., and Lee, G.M. (1999). The deformation behavior and mechanical properties of chondrocytes in articular Cartilage. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society 7, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Guilak, F., and Mow, V.C. (2000). The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. Journal of Biomechanics 33, 1663–1673.

    Article  CAS  PubMed  Google Scholar 

  • Haisch, A., Groger, A., Gebert, C., Leder, K., Ebmeyer, J., Sudhoff, H., Jovanovic, S., Sedlmaier, B., and Sittinger, M. (2005). Creating artificial perichondrium by polymer complex membrane macroencapsulation: immune protection and stabilization of subcutaneously transplanted tissue-engineered cartilage. European Archives of Otorhinolaryngol 262, 338–344.

    Article  PubMed  Google Scholar 

  • Hardingham, T.E., and Fosang, A.J. (1992). Proteoglycans: many forms and many functions. The Faseb Journal 6, 861–870.

    CAS  PubMed  Google Scholar 

  • Hendrickson, D.A., Nixon, A.J., Grande, D.A., Todhunter, R.J., Minor, R.M., Erb, H., and Lust, G. (1994). Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. Journal of Orthopaedic Research 12, 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Herzog, W., Diet, S., Suter, E., Mayzus, P., Leonard, T.R., Muller, C., Wu, J.Z., and Epstein, M. (1998). Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. Journal of Biomechanics 31, 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  • Hickey, M.J., Ohta, I., Shigetomi, M., Hurley, J.V., Kuwata, N., and O’Brien, B.M. (1994). Vascularized heterotopic osteochondral allografts in a rat model following long-term immunosuppression. Journal of Reconstructive Microsurgery 10, 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, C.A. (1944). Contribution to the pathogenesis of chondromalacia of the patella. Acta Chirurgica Scaninavica 83, 1–106.

    Google Scholar 

  • Holmdahl, D.E., and Ingelmark, B.E. (1950). The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthopaedica Scandinavica 20, 156–165.

    Article  CAS  PubMed  Google Scholar 

  • Homminga, G.N., Bulstra, S.K., Bouwmeester, P.S., and van der Linden, A.J. (1990). Perichondral grafting for cartilage lesions of the knee. The Journal of Bone and Joint Surgery 72, 1003–1007.

    CAS  Google Scholar 

  • Honner, R., and Thompson, R.C. (1971). The nutritional pathways of articular cartilage. An autoradiographic study in rabbits using 35 S injected intravenously. The Journal of Bone and Joint Surgery -American Volume 53, 742–748.

    CAS  PubMed  Google Scholar 

  • Huber, S., Winterhalter, K.H., and Vaughan, L. (1988). Isolation and sequence analysis of the glycosaminoglycan attachment site of type IX collagen. The Journal of Biological Chemistry 263, 752–756.

    CAS  PubMed  Google Scholar 

  • Huntley, J.S., Bush, P.G., McBirnie, J.M., Simpson, A.H., and Hall, A.C. (2005). Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. The Journal of Bone and Joint Surgery -American Volume 87, 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Hunziker, E.B. (1999). Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clinical Orthopaedics and Related Research 367, S135–146.

    Article  Google Scholar 

  • Hurtig, M., Pearce, S., Warren, S., Kalra, M., and Miniaci, A. (2001). Arthroscopic mosaic arthroplasty in the equine third carpal bone. Veterinary Surgery 30, 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, L.K. (2008). Hip osteoarthritis: influence of work with heavy lifting, climbing stairs or ladders, or combining kneeling/squatting with heavy lifting. Occupational and Environmental Medicine 65, 6–19.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E.A., Kinsey, S.E., English, A., Jones, R.A., Straszynski, L., Meredith, D.M., Markham, A.F., Jack, A., Emery, P., and McGonagle, D. (2002). Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis and Rheumatism 46, 3349–3360.

    Article  PubMed  Google Scholar 

  • Jurvelin, J., Saamanen, A.M., Arokoski, J., Helminen, H.J., Kiviranta, I., and Tammi, M. (1988). Biomechanical properties of the canine knee articular cartilage as related to matrix proteoglycans and collagen. Engineering in Medicine 17, 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Kawabe, N., and Yoshinao, M. (1991). The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants. Clinical Orthopaedics and Related Research 268, 279–293.

    PubMed  Google Scholar 

  • Kempson, G.E., Muir, H., Swanson, S.A., and Freeman, M.A. (1970). Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochimica et Biophysica Acta 215, 70–77.

    CAS  PubMed  Google Scholar 

  • Key, J.A. (1931). Experimental arthritis: the changes in joints produced by creating defects in the articular cartilage. The Journal of Bone and Joint Surgery -American Volume 13, 725–739.

    Google Scholar 

  • Kim, H.K., Moran, M.E., and Salter, R.B. (1991). The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. The Journal of Bone and Joint Surgery -American Volume 73, 1301–1315.

    CAS  PubMed  Google Scholar 

  • Kim, Y.J., Sah, R.L., Grodzinsky, A.J., Plaas, A.H., and Sandy, J.D. (1994). Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Archives of Biochemistry and Biophysics 311, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta, P., Lammentausta, E., Toyras, J., Kiviranta, I., and Jurvelin, J.S. (2008). Indentation diagnostics of cartilage degeneration. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 16, 796–804.

    Article  CAS  PubMed  Google Scholar 

  • Kleemann, R.U., Schell, H., Thompson, M., Epari, D.R., Duda, G.N., and Weiler, A. (2007). Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. The American Journal of Sports Medicine 35, 555–563.

    Article  PubMed  Google Scholar 

  • Knight, M.M., Lee, D.A., and Bader, D.L. (1998). The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochimica et Biophysica Acta 1405, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Knudson, C.B., and Knudson, W. (2001). Cartilage proteoglycans. Seminars in Cell & Developmental Biology 12, 69–78.

    Article  CAS  Google Scholar 

  • Konttinen, Y.T., Mandelin, J., Li, T.F., Salo, J., Lassus, J., Liljestrom, M., Hukkanen, M., Takagi, M., Virtanen, I., and Santavirta, S. (2002). Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis and Rheumatism 46, 953–960.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, R.K., Laasanen, M.S., Toyras, J., Rieppo, J., Hirvonen, J., Helminen, H.J., and Jurvelin, J.S. (2002). Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Journal of Biomechanics 35, 903–909.

    Article  CAS  PubMed  Google Scholar 

  • Korkala, O., and Kuokkanen, H. (1991). Autogenous osteoperiosteal grafts in the reconstruction of full-thickness joint surface defects. International Orthopaedics 15, 233–237.

    CAS  PubMed  Google Scholar 

  • Kramer, J., Bohrnsen, F., Schlenke, P., and Rohwedel, J. (2006). Stem cell-derived chondrocytes for regenerative medicine. Transplantation Proceedings 38, 762–765.

    Article  CAS  PubMed  Google Scholar 

  • Kwan, A.P., Sear, C.H., and Grant, M.E. (1986). Identification of disulphide-bonded type X procollagen polypeptides in embryonic chick chondrocyte cultures. FEBS Letters 206, 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Kwan, M.K., Coutts, R.D., Woo, S.L., and Field, F.P. (1989). Morphological and biomechanical evaluations of neocartilage from the repair of full-thickness articular cartilage defects using rib perichondrium autografts: a long-term study. Journal of Biomechanics 22, 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Lai, W.M., Hou, J.S., and Mow, V.C. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering 113, 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Lane, J.M., and Weiss, C. (1975). Review of articular cartilage collagen research. Arthritis and Rheumatism 18, 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Laprell, H., and Petersen, W. (2001). Autologous osteochondral transplantation using the diamond bone-cutting system (DBCS): 6-12 years’ follow-up of 35 patients with osteochondral defects at the knee joint. Archives of Orthopaedic and Trauma Surgery 121, 248–253.

    Article  CAS  PubMed  Google Scholar 

  • LeBaron, R.G., and Athanasiou, K.A. (2000). Ex vivo synthesis of articular cartilage. Biomaterials 21, 2575–2587.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.A., and Bader, D.L. (1995). The development and characterization of an in vitro system to study strain-induced cell deformation in isolated chondrocytes. In vitro Cellular & Developmental Biology 31, 828–835.

    Article  CAS  Google Scholar 

  • Lee, D.A., and Bader, D.L. (1997). Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. Journal of Orthopaedic Research 15, 181–188.

    Article  PubMed  Google Scholar 

  • Lee, D.A., Reisler, T., and Bader, D.L. (2003). Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthopaedica Scandinavica 74, 6–15.

    Article  PubMed  Google Scholar 

  • Li, B., and Aspden, R.M. (1997). Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. Journal of Bone and Mineral Research 12, 641–651.

    Article  CAS  PubMed  Google Scholar 

  • Li, L.P., Soulhat, J., Buschmann, M.D., and Shirazi-Adl, A. (1999). Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clinical Biomechanics (Bristol, Avon) 14(9), 673–682.

    Article  CAS  Google Scholar 

  • Li, W.J., Tuli, R., Huang, X., Laquerriere, P., and Tuan, R.S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26, 5158–5166.

    Article  CAS  PubMed  Google Scholar 

  • Lievense, A., Bierma-Zeinstra, S., Verhagen, A., Verhaar, J., and Koes, B. (2001). Influence of work on the development of osteoarthritis of the hip: a systematic review. Journal of Rheumatology 28, 2520–2528.

    CAS  PubMed  Google Scholar 

  • Lin, J.G., and Chen, W.L. (2009). Review: acupuncture analgesia in clinical trials. The American Journal of Chinese Medicine 37, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Linn, F.C., and Sokoloff, L. (1965). Movement and composition of interstitial fluid of cartilage. Arthritis and Rheumatism 8, 481–494.

    Article  CAS  PubMed  Google Scholar 

  • Lipshitz, H., Etheredge, R., 3 rd, and Glimcher, M.J. (1976). Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. Journal of Bone and Joint Surgery -American volume 58, 1149–1153.

    CAS  Google Scholar 

  • Livesley, P.J., Doherty, M., Needoff, M., and Moulton, A. (1991). Arthroscopic lavage of osteoarthritic knees. The Journal of Bone and Joint Surgery 73, 922–926.

    CAS  Google Scholar 

  • Lusse, S., Claassen, H., Gehrke, T., Hassenpflug, J., Schunke, M., Heller, M., and Gluer, C.C. (2000). Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magnetic Resonance Imaging 18, 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H.L., Chen, T.H., Low-Tone Ho, L., and Hung, S.C. (2005). Neocartilage from human mesenchymal stem cells in alginate: implied timing of transplantation. Journal of Biomedical Materials Research. Part A 74, 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Mahomed, M.N., Beaver, R.J., and Gross, A.E. (1992). The long-term success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint. Orthopedics 15, 1191–1199.

    CAS  PubMed  Google Scholar 

  • Mak, A.F. (1986). The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. Journal of Biomechanical Engineering 108, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Malinin, T., and Ouellette, E.A. (2000). Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 8, 483–491.

    Article  CAS  PubMed  Google Scholar 

  • Mankin, H.J. (1962). Localization of tritiated thymidine in articular cartilage of Rabbits: II. Repair in immature cartilage. Journal of Bone and Joint Surgery -American Volume 44, 688–698.

    Google Scholar 

  • Mankin, H.J. (1974a). The reaction of articular cartilage to injury and osteoarthritis (first of two parts). The New England Journal of Medicine 291, 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Mankin, H.J. (1974b). The reaction of articular cartilage to injury and osteoarthritis (second of two parts). The New England Journal of Medicine 291, 1335–1340.

    Article  CAS  PubMed  Google Scholar 

  • Mankin, H.J. (1982). The response of articular cartilage to mechanical injury. Journal of Bone Joint Surgery -American Volume 64, 460–466.

    CAS  Google Scholar 

  • Maroudas, A. (1976). Transport of solutes through cartilage: permeability to large molecules. Journal of Anatomy 122, 335–347.

    CAS  PubMed  Google Scholar 

  • Maroudas, A. (1979). Physicochemical Properties of Articular Cartilage. In Adult Articular cartilage, M.A.R. Freeman, ed. (Kent, Pitman Medical Publishing Co. Ltd.), pp. 215–290.

    Google Scholar 

  • Martin, I., Obradovic, B., Freed, L.E., and Vunjak-Novakovic, G. (1999). Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Annals of Biomedical Engineering 27, 656–662.

    Article  CAS  PubMed  Google Scholar 

  • Masuoka, K., Asazuma, T., Ishihara, M., Sato, M., Hattori, H., Ishihara, M., Yoshihara, Y., Matsui, T., Takase, B., Kikuchi, M., et al. (2005). Tissue engineering of articular cartilage using an allograft of cultured chondrocytes in a membrane-sealed atelocollagen honeycomb-shaped scaffold (ACHMS scaffold). Journal of Biomedical Materials Research. Part B: Applied Biomaterials 75, 177–184.

    Article  CAS  Google Scholar 

  • Matsuno, H., Nakamura, H., Katayama, K., Hayashi, S., Kano, S., Yudoh, K., and Kiso, Y. (2009). Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis. Bioscience, biotechnology, and biochemistry 73, 288–292.

    Article  CAS  PubMed  Google Scholar 

  • McCutchen, C.W. (1962). The frictional properties of animal joints. Wear 5(1), 1–17.

    Article  Google Scholar 

  • McKibbin, B., and Holdsworth, F.W. (1966). The nutrition of immature joint cartilage in the lamb. The Journal of Bone and Joint Surgery 48, 793–803.

    CAS  Google Scholar 

  • Meachim, G., and Stockwell, R.A. (1979). The Matrix. In Adult Articular Cartilage, F.M.A. R., ed. (Kent, Pitman Medical Publishing Co. Ltd), pp. 600–610.

    Google Scholar 

  • Meisenberg, G., and Simmons, W.H. (1998). Principles of Medical Biochemistry (Mosby Inc.).

    Google Scholar 

  • Menche, D.S., Frenkel, S.R., Blair, B., Watnik, N.F., Toolan, B.C., Yaghoubian, R.S., and Pitman, M.I. (1996). A comparison of abrasion burr arthroplasty and subchondral drilling in the treatment of full-thickness cartilage lesions in the rabbit. Arthroscopy 12, 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Messner, K., Fahlgren, A., Ross, I., and Andersson, B. (2000). Simultaneous changes in bone mineral density and articular cartilage in a rabbit meniscectomy model of knee osteoarthrosis. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society 8, 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, M.H., Akeson, W., and Convery, F.R. (1989). Resurfacing of the knee with fresh osteochondral allograft. The Journal of Bone and Joint Surgery. American Volume 71, 704–713.

    CAS  PubMed  Google Scholar 

  • Micheli, L.J., Browne, J.E., Erggelet, C., Fu, F., Mandelbaum, B., Moseley, J.B., and Zurakowski, D. (2001). Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clinical Journal of Sport Medicine 11, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Minas, T. (1998). Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. American Journal of Orthopedics (Belle Mead NJ) 27, 739–744.

    CAS  Google Scholar 

  • Minguell, J.J., Erices, A., and Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine (Maywood, NJ 226, 507–520.

    CAS  Google Scholar 

  • Mitchell, N., and Shepard, N. (1987). Effect of patellar shaving in the rabbit. Journal of Orthopaedic Research 5, 388–392.

    Article  CAS  PubMed  Google Scholar 

  • Moldovan, F., Pelletier, J.P., Hambor, J., Cloutier, J.M., and Martel-Pelletier, J. (1997). Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis and Rheumatism 40, 1653–1661.

    Article  CAS  PubMed  Google Scholar 

  • Mollenhauer, J., Bee, J.A., Lizarbe, M.A., and von der Mark, K. (1984). Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. The Journal of Cell Biology 98, 1572–1579.

    Article  CAS  PubMed  Google Scholar 

  • Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., and Langer, R. (1996). Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422.

    Article  CAS  PubMed  Google Scholar 

  • Moran, M.E., Kim, H.K., and Salter, R.B. (1992). Biological resurfacing of full-thickness defects in patellar articular cartilage of the rabbit. Investigation of autogenous periosteal grafts subjected to continuous passive motion. The Journal of bone and joint surgery 74, 659–667.

    CAS  Google Scholar 

  • Moseley, J.B., Jr., Wray, N.P., Kuykendall, D., Willis, K., and Landon, G. (1996). Arthroscopic treatment of osteoarthritis of the knee: a prospective, randomized, placebo-controlled trial. Results of a pilot study. The American Journal of Sports Medicine 24, 28–34.

    Article  PubMed  Google Scholar 

  • Mow, V.C., Holmes, M.H., and Lai, W.M. (1984). Fluid transport and mechanical properties of articular cartilage: a review. Journal of Biomechanics 17, 377–394.

    Article  CAS  PubMed  Google Scholar 

  • Mow, V.C., Kuei, S.C., Lai, W.M., and Armstrong, C.G. (1980). Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. Journal of Biomechanical Engineering 102, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Mow, V.C., Ratcliffe, A., and Poole, A.R. (1992). Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13, 67–97.

    Article  CAS  PubMed  Google Scholar 

  • Muir, H. (1980). The chemistry of the ground substance of jount cartilage. In The Joints and Synovial Fluid II, L. Sokolff, ed. (Academic Press), pp. 27–94.

    Google Scholar 

  • Muir, H. (1995). The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Muir, H., Bullough, P., and Maroudas, A. (1970). The distribution of collagen in human articular cartilage with some of its physiological implications. The Journal of Bone and Joint Surgery 52, 554–563.

    CAS  Google Scholar 

  • Nakase, T., Kaneko, M., Tomita, T., Myoui, A., Ariga, K., Sugamoto, K., Uchiyama, Y., Ochi, T., and Yoshikawa, H. (2000). Immunohistochemical detection of cathepsin D, K, and L in the process of endochondral ossification in the human. Histochemistry and Cell Biology 114, 21–27.

    CAS  PubMed  Google Scholar 

  • Nehrer, S., Spector, M., and Minas, T. (1999). Histologic analysis of tissue after failed cartilage repair procedures. Clinical Orthopaedics and Related Research 365, 149–162.

    Article  PubMed  Google Scholar 

  • Niederauer, G.G., Slivka, M.A., Leatherbury, N.C., Korvick, D.L., Harroff, H.H., Ehler, W.C., Dunn, C.J., and Kieswetter, K. (2000). Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21, 2561–2574.

    Article  CAS  PubMed  Google Scholar 

  • Nishida, K., Inoue, H., and Murakami, T. (1995). Immunohistochemical demonstration of fibronectin in the most superficial layer of normal rabbit articular cartilage. Annals of the rheumatic diseases 54, 995–998.

    Article  CAS  PubMed  Google Scholar 

  • Nishitani, K., Nakagawa, Y., Gotoh, T., Kobayashi, M., and Nakamura, T. (2008). Intraoperative acoustic evaluation of living human cartilage of the elbow and knee during mosaicplasty for osteochondritis dissecans of the elbow: an in vivo study. The American Journal of Sports Medicine 36, 2345–2353.

    Article  PubMed  Google Scholar 

  • O’Byrne, E., Pellas, T., and Laurent, D. (2003). Qualitative and quantitative in vivo assessment of articular cartilage using magnetic resonance imaging. Novartis Foundation symposium 249, 190–198; discussion 198–202, 234–198, 239–141.

    Article  PubMed  Google Scholar 

  • Ohlsen, L. (1976). Cartilage formation from free perichondrial grafts: an experimental study in rabbits. British Journal of Plastic Surgery 29, 262–267.

    CAS  PubMed  Google Scholar 

  • Ossendorf, C., Kaps, C., Kreuz, P.C., Burmester, G.R., Sittinger, M., and Erggelet, C. (2007). Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Research & Therapy 9, R41.

    Article  CAS  Google Scholar 

  • Ostrander, R.V., Goomer, R.S., Tontz, W.L., Khatod, M., Harwood, F.L., Maris, T.M., and Amiel, D. (2001). Donor cell fate in tissue engineering for articular cartilage repair. Clinical Orthopaedics and Related Research 389, 228–237.

    Article  PubMed  Google Scholar 

  • Owens, S., Wagner, P., and Vangsness, C.T., Jr. (2004). Recent advances in glucosamine and chondroitin supplementation. The Journal of Knee Surgery 17, 185–193.

    PubMed  Google Scholar 

  • Pavesio, A., Abatangelo, G., Borrione, A., Brocchetta, D., Hollander, A.P., Kon, E., Torasso, F., Zanasi, S., and Marcacci, M. (2003). Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Foundation Symposium 249, 203–217; discussion 229–233, 234–208, 239–241

    Article  PubMed  Google Scholar 

  • Pedersen, M.S., Moghaddam, A.Z., Bak, K., and Koch, J.S. (1995). The effect of bone drilling on pain in gonarthrosis. International Orthopaedics 19, 12–15.

    Article  CAS  PubMed  Google Scholar 

  • Perka, C., Schultz, O., Spitzer, R.S., Lindenhayn, K., Burmester, G.R., and Sittinger, M. (2000). Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21, 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, L., Minas, T., Brittberg, M., and Lindahl, A. (2003). Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. Journal of Bone and Joint Surgery -American Volume 85-A Suppl 2, 17–24.

    Google Scholar 

  • Pfander, D., Cramer, T., Weseloh, G., Pullig, O., Schuppan, D., Bauer, M., and Swoboda, B. (1999). Hepatocyte growth factor in human osteoarthritic cartilage. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 7, 548–559.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY) 284, 143–147.

    Article  CAS  Google Scholar 

  • Poole, A.R., Pidoux, I., Reiner, A., and Rosenberg, L. (1982). An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. The Journal of Cell Biology 93, 921–937.

    Article  CAS  PubMed  Google Scholar 

  • Poole, C.A. (1997). Articular cartilage chondrons: form, function and failure. Journal of Anatomy 191 (Pt 1), 1–13.

    Article  PubMed  Google Scholar 

  • Pugh, J.W., Radin, E.L., and Rose, R.M. (1974). Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage. Journal of Bone and Joint Surgery -American Volume 56, 313–321.

    CAS  Google Scholar 

  • Pulkkinen, L., Kainulainen, K., Krusius, T., Makinen, P., Schollin, J., Gustavsson, K.H., and Peltonen, L. (1990). Deficient expression of the gene coding for decorin in a lethal form of Marfan syndrome. The Journal of Biological Chemistry 265, 17780–17785.

    CAS  PubMed  Google Scholar 

  • Quinn, T.M., Morel, V., and Meister, J.J. (2001). Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. Journal of Biomechanics 34, 1463–1469.

    Article  CAS  PubMed  Google Scholar 

  • Radin, E.L., Paul, I.L., and Lowy, M. (1970). A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. Journal of Bone and Joint Surgery -American Volume 52, 444–456.

    CAS  Google Scholar 

  • Radin, E.L., and Rose, R.M. (1986). Role of subchondral bone in the initiation and progression of cartilage damage. Clinical orthopaedics and related research, 34–40.

    Google Scholar 

  • Ratcliffe, A., and Mow, V.C. (1976). Structure and function of articular cartilage. In: Extracellular Matrix. In Extracellular Matrix, W.D. Comper, ed. (Harwood Academic Publisher), pp. 234–302.

    Google Scholar 

  • Reboul, P., Pelletier, J.P., Tardif, G., Benderdour, M., Ranger, P., Bottaro, D.P., and Martel-Pelletier, J. (2001). Hepatocyte growth factor induction of collagenase 3 production in human osteoarthritic cartilage: involvement of the stress-activated protein kinase/c-Jun N-terminal kinase pathway and a sensitive p38 mitogen-activated protein kinase inhibitor cascade. Arthritis and Rheumatism 44, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Redman, S.N., Dowthwaite, G.P., Thomson, B.M., and Archer, C.W. (2004). The cellular responses of articular cartilage to sharp and blunt trauma. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 12, 106–116.

    Article  CAS  PubMed  Google Scholar 

  • Reinhold, T., Witt, C.M., Jena, S., Brinkhaus, B., and Willich, S.N. (2008). Quality of life and cost-effectiveness of acupuncture treatment in patients with osteoarthritis pain. European Journal of Health Economics 9, 209–219.

    Article  PubMed  Google Scholar 

  • Repo, R.U., and Finlay, J.B. (1977). Survival of articular cartilage after controlled impact. Journal of Bone and Joint Surgery -American Volume 59, 1068–1076.

    CAS  Google Scholar 

  • Ringe, J., and Sittinger, M. (2009). Tissue engineering in the rheumatic diseases. Arthritis Research & Therapy 11, 211.

    Article  CAS  Google Scholar 

  • Risbud, M.V., and Sittinger, M. (2002). Tissue engineering: advances in in vitro cartilage generation. Trends in Biotechnology 20, 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Roddy, E., Zhang, W., and Doherty, M. (2005). Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Annals of the Rheumatic Diseases 64, 544–548.

    Article  CAS  PubMed  Google Scholar 

  • Romeo, A.A., Cole, B.J., Mazzocca, A.D., Fox, J.A., Freeman, K.B., and Joy, E. (2002). Autologous chondrocyte repair of an articular defect in the humeral head. Arthroscopy 18, 925–929.

    Article  PubMed  Google Scholar 

  • Rosenberg, L. (1971). Chemical basis for the histological use of safranin O in the study of articular cartilage. Journal of Bone and Joint Surgery -American Volume 53, 69–82.

    CAS  Google Scholar 

  • Ruoslahti, E., and Yamaguchi, Y. (1991). Proteoglycans as modulators of growth factor activities. Cell 64, 867–869.

    Article  CAS  PubMed  Google Scholar 

  • Russlies, M., Behrens, P., Wunsch, L., Gille, J., and Ehlers, E.M. (2002). A cell-seeded biocomposite for cartilage repair. Annals of Anatomy 184, 317–323.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M.C., and Sandell, L.J. (1990). Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. Journal of Biological Chemistry 265, 10334–10339.

    CAS  PubMed  Google Scholar 

  • Salter, D.M. (1993). Tenascin is increased in cartilage and synovium from arthritic knees. British Journal of Rheumatology 32, 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Sams, A.E., Minor, R.R., Wootton, J.A., Mohammed, H., and Nixon, A.J. (1995). Local and remote matrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 3, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, R.E., Lee, C.R., Ghivizzani, S.C., Evans, C.H., Yannas, I.V., Olsen, B.R., and Spector, M. (2002). Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Human Gene Therapy 13, 791–802.

    Article  CAS  PubMed  Google Scholar 

  • Schell, H., Lienau, J., Kleemann, R.U., Schlichting, K., Taylor, W.R., Weiler, A., and Duda, G.N. (2007). Crushed bone grafts and a collagen membrane are not suitable for enhancing cartilage quality in the regeneration of osteochondral defects--an in vivo study in sheep. Journal of Biomechanics 40 Suppl 1, S64–72.

    Article  PubMed  Google Scholar 

  • Schlichting, K., Schell, H., Kleemann, R.U., Schill, A., Weiler, A., Duda, G.N., and Epari, D.R. (2008). Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. The American Journal of Sports Medicine 36, 2379–2391.

    Article  PubMed  Google Scholar 

  • Seradge, H., Kutz, J.A., Kleinert, H.E., Lister, G.D., Wolff, T.W., and Atasoy, E. (1984). Perichondrial resurfacing arthroplasty in the hand. The Journal of hand surgery 9, 880–886.

    CAS  PubMed  Google Scholar 

  • Sirlin, C.B., Brossmann, J., Boutin, R.D., Pathria, M.N., Convery, F.R., Bugbee, W., Deutsch, R., Lebeck, L.K., and Resnick, D. (2001). Shell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses. Radiology 219, 35–43.

    CAS  PubMed  Google Scholar 

  • Sittinger, M., Bujia, J., Minuth, W.W., Hammer, C., and Burmester, G.R. (1994). Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Sittinger, M., Hutmacher, D.W., and Risbud, M.V. (2004). Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology 15, 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Sledge, S.L. (2001). Microfracture techniques in the treatment of osteochondral injuries. Clinics in Sports Medicine 20, 365–377.

    Article  CAS  PubMed  Google Scholar 

  • Solchaga, L.A., Gao, J., Dennis, J.E., Awadallah, A., Lundberg, M., Caplan, A.I., and Goldberg, V.M. (2002). Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Engineering 8, 333–347.

    Article  CAS  PubMed  Google Scholar 

  • Soren, A. (1965). Treatment of musculoskeletal disorders with ultrasound. Journal of Occupational Medicine 7, 434–438.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, S. (1987). The immune response to osteochondral allografts in dogs. Journal of Bone and Joint Surgery -American Volume 69, 573–582.

    CAS  Google Scholar 

  • Stevenson, S., Dannucci, G.A., Sharkey, N.A., and Pool, R.R. (1989). The fate of articular cartilage after transplantation of fresh and cryopreserved tissue-antigen-matched and mismatched osteochondral allografts in dogs. Journal of Bone and Joint Surgery -American Volume 71, 1297–1307.

    CAS  Google Scholar 

  • Stockwell, R.A., and Meachim, G. (1979). The Chondrocyte. In Adult Articular Cartilage, F.M.A. R., ed. (Kent, Pitman Medical Publishing Co. Ltd), pp. 600–610.

    Google Scholar 

  • Tamai, N., Myoui, A., Hirao, M., Kaito, T., Ochi, T., Tanaka, J., Takaoka, K., and Yoshikawa, H. (2005). A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 13, 405–417.

    Article  PubMed  Google Scholar 

  • Temenoff, J.S., and Mikos, A.G. (2000). Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Tew, S.R., Kwan, A.P., Hann, A., Thomson, B.M., and Archer, C.W. (2000). The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis and Rheumatism 43, 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R.C., Jr. (1975). An experimental study of surface injury to articular cartilage and enzyme responses within the joint. Clinical orthopaedics and related research, 239-248.

    Google Scholar 

  • Tibesku, C.O., Szuwart, T., Kleffner, T.O., Schlegel, P.M., Jahn, U.R., Van Aken, H., and Fuchs, S. (2004). Hyaline cartilage degenerates after autologous osteochondral transplantation. Journal of Orthopaedic Research 22, 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  • Torzilli, P.A., and Mow, V.C. (1976). On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function--I. The formulation. Journal of Biomechanics 9, 541–552.

    Article  CAS  PubMed  Google Scholar 

  • Towheed, T.E., Maxwell, L., Judd, M.G., Catton, M., Hochberg, M.C., and Wells, G. (2006). Acetaminophen for osteoarthritis. Cochrane database of systematic reviews (Online), CD004257.

    Google Scholar 

  • Vangsness, C.T., and Smith, C.F. (1995). Arthroscopic shoulder surgeyr with three different laser systems: An evaluation of laser applications. Arthroscopy: The Journal of Arthroscopic & Related Surgery 11, 696–700.

    Article  Google Scholar 

  • Vogel, K.G., Paulsson, M., and Heinegard, D. (1984). Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. The Biochemical Journal 223, 587–597.

    CAS  PubMed  Google Scholar 

  • von der Mark, K., Gauss, V., von der Mark, H., and Muller, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531–532.

    Article  PubMed  Google Scholar 

  • Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., and Goldberg, V.M. (1994). Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery -American Volume 76, 579–592.

    CAS  Google Scholar 

  • Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N., and Yoneda, M. (2002). Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 10, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Wegman, A., van der Windt, D., van Tulder, M., Stalman, W., and de Vries, T. (2004). Nonsteroidal antiinflammatory drugs or acetaminophen for osteoarthritis of the hip or knee? A systematic review of evidence and guidelines. Journal of Rheumatology 31, 344–354.

    CAS  PubMed  Google Scholar 

  • Weightman, B., and Kempson, G.E. (1979). Load Cartilage. In Adult Articular Cartilage. M.A.R. Freeman, ed. (London, Pitman Medical Publishing Co. Ltd), pp. 291–331.

    Google Scholar 

  • Weisser, J., Rahfoth, B., Timmermann, A., Aigner, T., Brauer, R., and von der Mark, K. (2001). Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society 9 Suppl A, S48–54.

    Article  Google Scholar 

  • Welch, V., Brosseau, L., Peterson, J., Shea, B., Tugwell, P., and Wells, G. (2001). Therapeutic ultrasound for osteoarthritis of the knee. Cochrane database of systematic reviews (Online), CD003132.

    Google Scholar 

  • Whiteside, R.A., Jakob, R.P., Wyss, U.P., and Mainil-Varlet, P. (2005). Impact loading of articular cartilage during transplantation of osteochondral autograft. The Journal of Bone and Joint Surgery 87, 1285–1291.

    Article  CAS  Google Scholar 

  • Wong, M., Ponticiello, M., Kovanen, V., and Jurvelin, J.S. (2000). Volumetric changes of articular cartilage during stress relaxation in unconfined compression. Journal of biomechanics 33, 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  • Wyre, R.M., and Downes, S. (2000). An in vitro investigation of the PEMA/THFMA polymer system as a biomaterial for cartilage repair. Biomaterials 21, 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, J.U., Barthel, T.S., Nishimura, K., Solchaga, L., Caplan, A.I., Goldberg, V.M., and Johnstone, B. (1998). The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. Journal of Bone and Joint Surgery -American Volume 80, 1745–1757.

    CAS  Google Scholar 

  • Zhang, W., Jones, A., and Doherty, M. (2004). Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials. Annals of the Rheumatic Diseases 63, 901–907.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg N. Duda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Duda, G.N., Eniwumide, J.O., Sittinger, M. (2011). Constraints to Articular Cartilage Regeneration. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_37

Download citation

Publish with us

Policies and ethics