Skip to main content

Regenerative Therapies for the Ocular Surface

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Integrity of ocular surface depends on adequate tear film and stability of the surface epithelium consisting of two specialized phenotypically different epithelial cells, the central transparent corneal epithelium and the peripheral conjunctival cells, separated by a more specialized transition zone, called the limbus. Similar to the epithelial regeneration in other parts of the body, the corneal epithelium is regenerated from the stem cells located in limbus. Severe chemical burns and other diseases can cause damage to the limbus, resulting in a condition called Limbal Stem Cell Deficiency (LSCD). Effective therapeutic modalities for this vision-threatening condition include use of human amniotic membrane, replenishing the stores of limbal stem cells by limbal transplantation. However last decade has witnessed the use of ex-vivo expanded sheet of limbal epithelial cells for ocular surface reconstruction in such cases. Our group has established a simple, feeder-cell free, cost-effective way of culturing the corneal epithelium from limbal tissues within 2 weeks, using human amniotic membrane as a carrier. The interim results of a clinical trial involving 700 patients with severe unilateral and bilateral LSCD revealed 70% and 50% success at the end of 3 and 5 years respectively. For patients affected by bilateral disease, options include use of allogenic tissues with immunosuppressive therapy or use of autologous alternative sources of epithelium like oral mucosal epithelium, both of which show limited success. The pre-requisites for cell therapy are that the desired cells should be grown in sufficient amounts, should survive, integrate and network with the host tissues and cause no harm to the recipient. All these criteria are fulfilled when limbal epithelial cell therapy is used for ocular surface reconstruction thus making it a successful model in the emerging field of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang LP, Nakamura T, et al (2006) Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Arch Ophthalmol 124:1543–1551.

    Article  PubMed  Google Scholar 

  • Baradaran-Rafii A, Ebrahimi M, et al (2010) Midterm outcomes of autologous Cultivated Limbal Stem Cell transplantation with or without penetrating keratoplasty. Cornea Mar 17 [Epub ahead of print].

    Google Scholar 

  • Bickenbach JR (1981) Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 60:1611–1620.

    Article  PubMed  Google Scholar 

  • Chen JJ and Tseng SC (1990) Corneal wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci 31:1301–1314.

    CAS  PubMed  Google Scholar 

  • Chen JJ and Tseng SC (1991) Abnormal corneal epithelial wound healing in partialthickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32:2219–2233.

    CAS  PubMed  Google Scholar 

  • Cotsarelis G and Cheng SZ, et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 57:201–209.

    Article  CAS  PubMed  Google Scholar 

  • Croasdale CR, Schwartz GS, et al (1999) Keratolimbal allograft: Recommendations for tissue procurement and preparation by eye banks, and standard surgical technique. Cornea 18:52–58.

    Article  CAS  PubMed  Google Scholar 

  • Davanger M and Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561.

    Article  CAS  PubMed  Google Scholar 

  • Daya SM, Bell RW, et al (2000) Clinical and pathologic findings in human keratolimbal allograft rejection. Cornea 19:443–450.

    Article  CAS  PubMed  Google Scholar 

  • Daya SM, Ilari FA (2001) Living related conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmol. 108:126–133; discussion 133–134.

    Article  CAS  Google Scholar 

  • Daya SM, Watson A, et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Opthalmol 112:470–477.

    Google Scholar 

  • Dua H S and Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    Article  CAS  PubMed  Google Scholar 

  • Epstein SP, Wolosin JM, et al (2005) P63 expression levels in side population and low light scattering ocular surface epithelial cells. Trans Am Ophthalmol Soc 103:187–199 discussion 199.

    PubMed  Google Scholar 

  • Fatima A, Sangwan VS, et al (2006) Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med 52:257–261.

    CAS  PubMed  Google Scholar 

  • Hanna C (1966) Proliferation and migration of epithelial cells during corneal wound repair in the rabbit and the rat. Am J Ophthalmol 61:55–63

    CAS  PubMed  Google Scholar 

  • HÃ¥skjold E, Bjerknes R, et al (1989) Cell kinetics during healing of corneal epithelial wounds. Acta Ophthalmol (Copenh) 67:174–180.

    Article  Google Scholar 

  • Hayashida Y, Nishida K, et al (2005) Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperatureresponsive culture surface. Invest Ophthalmol Vis Sci 46:1632–1639.

    Article  PubMed  Google Scholar 

  • Henderson TR, Findlay I, et al (2001) Identifying the origin of single corneal cells by DNA fingerprinting: Part II- Application to limbal allografting. Cornea 20:404–407.

    Article  CAS  PubMed  Google Scholar 

  • Henderson TR, McCall SH, et al (1997) Do transplanted corneal limbal stem cells survive in vivo long-term? Possible techniques to detect donor cell survival by polymerase chain reaction with the amelogenin gene and Y-specific probes. Eye 11:779–785.

    PubMed  Google Scholar 

  • Holbrook KA and Odland GF (1975) The fine structure of developing human epidermis: Light, scanning, and transmission electron microscopy of the periderm. J Invest Dermatol 65:16–38

    Article  CAS  PubMed  Google Scholar 

  • Holland EJ, DeRuyter DN, et al (1987) Langerhans cells in organ-cultured corneas. Arch Ophthalmol 105:542–545.

    CAS  PubMed  Google Scholar 

  • Ilari L and Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmol 109:1278–1284.

    Article  Google Scholar 

  • Kawashima M, Kawakita T, et al (2007) Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Arch Ophthalmol 125:1337–1344.

    Article  PubMed  Google Scholar 

  • Kenyon KR and Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmol 96:709–722; discussion 722–723.

    CAS  Google Scholar 

  • Kim JC and Tseng SC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14: 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Inatomi T, et al (2001) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmol 108:1569–1574.

    Article  CAS  Google Scholar 

  • Kolli S, Ahmad S, et al (2010) Successful clinical implementation of Corneal Epithelial Stem Cell Therapy for treatment of Unilateral Limbal Stem Cell Deficiency. Stem Cells 28:597–610.

    CAS  PubMed  Google Scholar 

  • Kruse FE, Chen JJ, et al (1990) Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Invest Ophthalmol Vis Sci 31:1903–1913.

    CAS  PubMed  Google Scholar 

  • Ma DH, Kuo MT et al (2009) Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (Lond) 23:1442–1450.

    CAS  Google Scholar 

  • Nakamura T, Koizumi N, Tsuzuki M, Inoki K, Sano Y, Sotozono C, Kinoshita S (2003) Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea. 22:70–71.

    Article  PubMed  Google Scholar 

  • Nakamura T, Inatomi T, et al (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmol 113:1765–1772.

    Article  Google Scholar 

  • Nelson DJ (1988) Impression cytology. Cornea 7:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Yamato M, et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196.

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki-Dantas CM, Dantas PEC et al (2001) Ipsilateral limbal translocation for treatment of partial limbal deficiency secondary to ocular alkali burn. Br J Ophthalmol 85:1031–1033.

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Lim CH, et al (2006) The side population cells in the rabbit limbus sensitively increased in response to the central cornea wounding. Invest Ophthalmol Vis Sci 47:892–900.

    Article  PubMed  Google Scholar 

  • Pauklin M, Steuhl KP, et al (2009) Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultivated limbal epithelium. Ophthalmol. 116:1048–1056

    Article  Google Scholar 

  • Pellegrini G, Traverso CE, et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993.

    Article  CAS  PubMed  Google Scholar 

  • Puangsricharern V and Tseng SC (1995) Cytologic evidence of corneal disease with limbal stem cell deficiency. Ophthalmol 102:1476–1485.

    CAS  Google Scholar 

  • Rama P, Bonini S, et al (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485.

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Rajagopal R, et al (1999) Limbal autografting: Comparison of results in acute and chronic phases of ocular surface burns. Cornea 18:164–171.

    Article  CAS  PubMed  Google Scholar 

  • Sangwan VS, Matalia HP, et al (2005) Early results of penetrating keratoplasty after cultivated limbal epithelium transplantation. Arch Ophthalmol 123:334–340.

    Article  PubMed  Google Scholar 

  • Sangwan VS, Matalia HP, et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34.

    Article  PubMed  Google Scholar 

  • Sangwan VS, Tseng SC (2001) New perspectives in ocular surface disorders. An integrated approach for diagnosis and management. Indian J Ophthalmol 49:153–168.

    CAS  PubMed  Google Scholar 

  • Sangwan VS, Vemuganti GK, et al (2003) Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 23:169–174.

    Article  CAS  PubMed  Google Scholar 

  • Schermer A, Galvin S, et al (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62.

    Article  CAS  PubMed  Google Scholar 

  • Schwab IR, Reyes M, et al (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426.

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki J, Konomi K, et al (2006) Ocular surface reconstruction for thermal burns caused by fireworks. Cornea 25:139–145.

    Article  PubMed  Google Scholar 

  • Shimazaki J, Shimmura S, et al (2002) Randomized clinical trial of deep lamellar keratoplasty vs penetrating keratoplasty. Am J Ophthalmol 134:159–165.

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, et al (2008) Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmol 115:1989–1997.

    Article  Google Scholar 

  • Solomon A, Ellies P, et al (2002) Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmo 109:1159–1166.

    Article  Google Scholar 

  • Srinivasan BD and Eakins KE (1979) The reepithelialization of rabbit cornea following single and multiple denudation. Exp Eye Res 29:595–600.

    Article  CAS  PubMed  Google Scholar 

  • Theng JT and Tan DT (1997) Combined penetrating keratoplasty and limbal allograft transplantation for severe corneal burns. Ophthalmic Surg Lasers 28:765–768.

    CAS  PubMed  Google Scholar 

  • Thoft RA and Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24:1442–1443.

    CAS  PubMed  Google Scholar 

  • Thompson HW, Malter JS, et al (1991) Flow cytometry measurements of the DNA content of corneal epithelial cells during wound healing. Invest Ophthalmol Vis Sci 32:433–436.

    CAS  PubMed  Google Scholar 

  • Tsai RJ, Li LM, et al (2000a) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93.

    Article  CAS  PubMed  Google Scholar 

  • Tsai RJ, Li L, et al (2000b) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells (1). Am J Ophthalmol 130:543.

    Article  PubMed  Google Scholar 

  • Tseng SC (1985) Staging of conjunctival squamous metaplasia by impression cytology. Ophthalmol 92:728–733.

    CAS  Google Scholar 

  • Tseng SC, Prabhasawat P, et al (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441.

    CAS  PubMed  Google Scholar 

  • Tsubota K, Satake Y, et al (1999) Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N Engl J Med 340:1697–1703.

    Article  CAS  PubMed  Google Scholar 

  • Van Buskirk E M (1989) The anatomy of the limbus. Eye 3:101–108.

    PubMed  Google Scholar 

  • Vemuganti GK, Fatima A, et al (2009) Limbal stem cells: application in ocular biomedicine. Int Rev Cell Mol Biol 275:133–181.

    Article  PubMed  Google Scholar 

  • Vemuganti GK, Kashyap S, et al (2004) Ex-vivo potential of cadaveric and fresh limbal tissues to regenerate cultured epithelium. Indian J Ophthalmol 52:113–120.

    PubMed  Google Scholar 

  • Williams KA, Brereton HM, et al (1995) Use of DNA polymorphisms and the polymerase chain reaction to examine the survival of a human limbal stem cell allograft. Am J Ophthalmol 120:342–350.

    CAS  PubMed  Google Scholar 

  • Zhou M, Li XM, Lavker RM (2006) Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells. A comparison of limbal and corneal epithelial basal cells. J Biol Chem. 281:19600–19609.

    Article  CAS  PubMed  Google Scholar 

  • Zieske JD, Bukusoglu G, et al (1992) Characterization of a potential marker of corneal epithelial stem cells. Invest Ophthalmol Vis Sci 33:143–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge all the patients of limbal stem cell deficiency who participated in the study. We wish to profusely thank Dr G Chandra Sekhar, Director, LV Prasad Eye Institute, Dr Gullapalli N Rao, Chairman, LV Prasad Eye Institute for their constant support and guidance. We also thank Karthik for assisting in figure designing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta K. Vemuganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Vemuganti, G.K., Sangwan, V.S., Mariappan, I., Balasubramanian, D. (2011). Regenerative Therapies for the Ocular Surface. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_26

Download citation

Publish with us

Policies and ethics