Skip to main content

Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration

  • Chapter
  • First Online:
Book cover Regenerative Medicine

Abstract

For long time, the heart was categorized as a post-mitotic organ, unable to undergo substantial renewal during the adult life. The heart scenario was opposite to the situation of other organs such as the liver, the skin and the bone marrow, whose ability to regenerate has been known for longtime. Today, several proofs exist that the heart has a self renewal capacity similar to that in other organs due to the discovery of resident stem cells that have been shown to produce new myocytes throughout the adult life. If the discovery of stem cells in the heart has resolved the issue of myocardial renewal, it has not resolved yet the issue of the best “biological treatment” to efficiently repair myocardium after ischemic damage. In fact, up to date, no clear indication exists about the identity of progenitor cells that are best suited as “biological drugs” for myocardial repair. In addition, despite the always growing number of publications describing the ability of cardiac and non-cardiac derived cells to repair the ischemic heart in preclinical models, the limited, although remarkable, clinical benefits obtained in first generation clinical trials in patients, have raised the issue of stem cell-mediated cardiac repair efficiency. In this contribution, the present and the future of heart repair will be outlined in the view of the most recent advancements in the understanding of basic biology, preclinical testing and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif A, Bolli R, Tleyjeh I M et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167: 989–97.

    Article  PubMed  Google Scholar 

  • Amsalem Y, Mardor Y, Feinberg M S et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116: I38–45.

    Article  CAS  PubMed  Google Scholar 

  • Andersen D C, Andersen P, Schneider M et al (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27: 1571–81.

    Article  PubMed  Google Scholar 

  • Anversa P, Kajstura J, Leri A et al (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113: 1451–63.

    Article  PubMed  Google Scholar 

  • Anversa P, Palackal T, Sonnenblick E H et al (1990) Hypertensive cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. J Clin Invest 85: 994–7.

    Article  CAS  PubMed  Google Scholar 

  • Astorri E, Bolognesi R, Colla B et al (1977) Left ventricular hypertrophy: a cytometric study on 42 human hearts. J Mol Cell Cardiol 9: 763–75.

    Article  CAS  PubMed  Google Scholar 

  • Ayach B B, Yoshimitsu M, Dawood F et al (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103: 2304–9.

    Article  CAS  PubMed  Google Scholar 

  • Barile L, Chimenti I, Gaetani R et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4 Suppl 1: S9–S14.

    Article  CAS  PubMed  Google Scholar 

  • Bearzi C, Leri A, Lo Monaco F et al (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA 106:14022–7.

    Article  Google Scholar 

  • Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104: 14068–73.

    Article  CAS  PubMed  Google Scholar 

  • Beltrami A P, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–76.

    Article  CAS  PubMed  Google Scholar 

  • Beltrami A P, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344: 1750–7.

    Article  CAS  PubMed  Google Scholar 

  • Beltrami C A, Di Loreto C, Finato N et al (1997) Proliferating cell nuclear antigen (PCNA), DNA synthesis and mitosis in myocytes following cardiac transplantation in man. J Mol Cell Cardiol 29: 2789–802.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj R D, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324: 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Besmer P (1991) The kit ligand encoded at the murine Steel locus: a pleiotropic growth and differentiation factor. Curr Opin Cell Biol 3: 939–46.

    Article  CAS  PubMed  Google Scholar 

  • Besmer P, Manova K, Duttlinger R et al (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl: 125–37.

    Google Scholar 

  • Boheler K R (2009) Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol 221: 10–7.

    Article  CAS  PubMed  Google Scholar 

  • Boni A, Urbanek K, Nascimbene A et al (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA 105: 15529–34.

    Article  CAS  PubMed  Google Scholar 

  • Borchardt T and Braun T (2007) Cardiovascular regeneration in non-mammalian model systems: what are the differences between newts and man? Thromb Haemost 98: 311–8.

    CAS  PubMed  Google Scholar 

  • Bu L, Jiang X, Martin-Puig S et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460: 113–7.

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Meilhac S and Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6: 826–35.

    Article  CAS  PubMed  Google Scholar 

  • Cai C L, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877–89.

    Article  CAS  PubMed  Google Scholar 

  • Capogrossi M C (2004) Cardiac stem cells fail with aging: a new mechanism for the age-dependent decline in cardiac function. Circ Res 94: 411–3.

    Article  CAS  PubMed  Google Scholar 

  • Challen G A and Little M H (2006) A side order of stem cells: the SP phenotype. Stem Cells 24: 3–12.

    Article  PubMed  Google Scholar 

  • Chen V C, Stull R, Joo D et al (2008) Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotechnol 26: 1169–78.

    Article  CAS  PubMed  Google Scholar 

  • Chimenti C, Kajstura J, Torella D et al (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93: 604–13.

    Article  CAS  PubMed  Google Scholar 

  • Cho H J, Lee N, Lee J Y et al (2007) Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 204: 3257–69.

    Article  CAS  PubMed  Google Scholar 

  • Christoffels V M, Grieskamp T, Norden J et al (2009) Tbx18 and the fate of epicardial progenitors. Nature 458: E8–9; discussion E9–10.

    Article  CAS  PubMed  Google Scholar 

  • Christoforou N, Miller R A, Hill C M et al (2008) Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. J Clin Invest 118: 894–903.

    CAS  PubMed  Google Scholar 

  • Cohen E D, Tian Y and Morrisey E E (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135: 789–98.

    Article  CAS  PubMed  Google Scholar 

  • Collesi C, Zentilin L, Sinagra G et al (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183: 117–28.

    Article  CAS  PubMed  Google Scholar 

  • Davis D R, Zhang Y, Smith R R et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4: e7195.

    Article  PubMed  CAS  Google Scholar 

  • De Falco E, Avitabile D, Totta P et al (2009) Altered Sdf-1-Mediated Diffferentiation of Bone Marrow-Derived Endothelial Progenitor Cells in Diabetes Mellitus. J Cell Mol Med [Epub ahead of print].

    Google Scholar 

  • Dernbach E, Urbich C, Brandes R P et al (2004) Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 104: 3591–7.

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano V, Cencioni C, Zaccagnini G et al (2009) p66ShcA modulates oxidative stress and ­survival of endothelial progenitor cells in response to high glucose. Cardiovasc Res 82: 421–9.

    PubMed  Google Scholar 

  • Dimmeler S, Aicher A, Vasa M et al (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108: 391–7.

    CAS  PubMed  Google Scholar 

  • Fazel S, Cimini M, Chen L et al (2006) Cardioprotective c-kit + cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116: 1865–77.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty M P, Abdel-Latif A, Li Q et al (2008) Noncanonical Wnt11 signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells. Circulation 117: 2241–52.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty M P and Dawn B (2008) Noncanonical Wnt11 signaling and cardiomyogenic differentiation. Trends Cardiovasc Med 18: 260–8.

    Article  CAS  PubMed  Google Scholar 

  • Freund C and Mummery C L (2009) Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 107: 592–9.

    Article  CAS  PubMed  Google Scholar 

  • Gaipa G, Tilenni M, Straino S et al (2010) GMP-based CD133(+) cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. J Cell Mol Med 14(6B): 1619–34.

    Google Scholar 

  • Gianella A, Guerrini U, Tilenni M et al (2010) Magnetic Resonance Imaging of Human Endothelial Progenitors Reveals Opposite Effects on Vascular and Muscle Regeneration into Ischemic Tissues. Cardiovasc Res 85: 503–13.

    Google Scholar 

  • Gude N A, Emmanuel G, Wu W et al (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102: 1025–35.

    Article  CAS  PubMed  Google Scholar 

  • Hiasa K I, Ishibashi M, Ohtani K et al (2004) Gene Transfer of Stromal Cell-Derived Factor-1{alpha} Enhances Ischemic Vasculogenesis and Angiogenesis via Vascular Endothelial Growth Factor/Endothelial Nitric Oxide Synthase-Related Pathway. Next-Generation Chemokine Therapy for Therapeutic Neovascularization. Circulation 17: 17.

    Google Scholar 

  • Hierlihy A M, Seale P, Lobe C G et al (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530: 239–43.

    Article  CAS  PubMed  Google Scholar 

  • Hill J M, Zalos G, Halcox J P et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593–600.

    Article  PubMed  Google Scholar 

  • Holmes C and Stanford W L (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25: 1339–47.

    Article  CAS  PubMed  Google Scholar 

  • Hosoda T, D’Amario D, Cabral-Da-Silva M C et al (2009) Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA 106: 17169–74.

    Article  CAS  PubMed  Google Scholar 

  • Huang E, Nocka K, Beier D R et al (1990) The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63: 225–33.

    Article  CAS  PubMed  Google Scholar 

  • Hur J, Yang H M, Yoon C H et al (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116: 1671–82.

    Article  PubMed  Google Scholar 

  • Itzhaki-Alfia A, Leor J, Raanani E et al (2009) Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation 120: 2559–66.

    Article  PubMed  Google Scholar 

  • Joggerst S J and Hatzopoulos A K (2009) Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med 11: e20.

    Article  PubMed  Google Scholar 

  • Johnston P V, Sasano T, Mills K et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120: 1075–83, 7 p following 1083.

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J, Leri A, Finato N et al (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95: 8801–5.

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96: 127–37.

    Article  CAS  PubMed  Google Scholar 

  • Kamp T J and Lyons G E (2009) On the road to iPS cell cardiovascular applications. Circ Res 105: 617–9.

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Yang Y J, Li C J et al (2008) Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta-analysis for randomized controlled trials. Coron Artery Dis 19: 327–35.

    Article  PubMed  Google Scholar 

  • Krankel N, Adams V, Linke A et al (2005) Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol 25: 698–703.

    Article  PubMed  CAS  Google Scholar 

  • Kuzmenkin A, Liang H, Xu G et al (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. Faseb J 23: 4168–80.

    Article  CAS  PubMed  Google Scholar 

  • Kwon C, Arnold J, Hsiao E C et al (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104: 10894–9.

    Article  CAS  PubMed  Google Scholar 

  • Kwon C, Qian L, Cheng P et al (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11: 951–7.

    Article  CAS  PubMed  Google Scholar 

  • Laugwitz K L, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–53.

    Article  CAS  PubMed  Google Scholar 

  • Leri A, Barlucchi L, Limana F et al (2001) Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc Natl Acad Sci USA 98: 8626–31.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Naqvi N, Yahiro E et al (2008) c-kit is required for cardiomyocyte terminal differentiation. Circ Res 102: 677–85.

    Article  CAS  PubMed  Google Scholar 

  • Limana F, Bertolami C, Mangoni A et al (2009) Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: Role of the pericardial fluid. J Mol Cell Cardiol.

    Google Scholar 

  • Limana F, Zacheo A, Mocini D et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101: 1255–65.

    Article  CAS  PubMed  Google Scholar 

  • Linzbach A J (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5: 370–82.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski M J, Biondi-Zoccai G G, Abbate A et al (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50: 1761–7.

    Article  PubMed  Google Scholar 

  • Loomans C J, De Koning E J, Staal F J et al (2005) Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid Redox Signal 7: 1468–75.

    Article  CAS  PubMed  Google Scholar 

  • Loomans C J, de Koning E J, Staal F J et al (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53: 195–9.

    Article  CAS  PubMed  Google Scholar 

  • Madeddu P, Kraenkel N, Barcelos L S et al (2008) Phosphoinositide 3-kinase gamma gene knockout impairs postischemic neovascularization and endothelial progenitor cell functions. Arterioscler Thromb Vasc Biol 28: 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Mangi A A, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9: 1195–201.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti V, Menghini R, Rizza S et al (2006) Benfotiamine Counteracts Glucose Toxicity Effects on Endothelial Progenitor Cell Differentiation via Akt/FoxO Signaling. Diabetes 55: 2231–7.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fernandez A, Nelson T J, Yamada S et al (2009) iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ Res 105: 648–56.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rendon E, Brunskill S, Doree C et al (2008a) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev: CD006536.

    Google Scholar 

  • Martin-Rendon E, Brunskill S J, Hyde C J et al (2008b) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29: 1807–18.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Honda A, Nagai T et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119: 2204–17.

    CAS  PubMed  Google Scholar 

  • Matsuura K, Nagai T, Nishigaki N et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279: 11384–91.

    Article  CAS  PubMed  Google Scholar 

  • Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118: 507–17.

    Article  PubMed  Google Scholar 

  • Meilhac S M, Esner M, Kelly R G et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6: 685–98.

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen T S, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–70.

    CAS  PubMed  Google Scholar 

  • Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95: 911–21.

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen T S, Hanna J, Zhang X et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454: 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen T S, Ku M, Jaffe D B et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–60.

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Bellin M, Jung C B et al (2009) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. Faseb J.

    Google Scholar 

  • Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151–65.

    Article  CAS  PubMed  Google Scholar 

  • Muraski J A, Rota M, Misao Y et al (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13: 1467–75.

    Article  CAS  PubMed  Google Scholar 

  • Nelson T J, Martinez-Fernandez A, Yamada S et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120: 408–16.

    Article  PubMed  Google Scholar 

  • Neumuller R A and Knoblich J A (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23: 2675–99.

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Bradfute S B, Gallardo T D et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313–8.

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001a) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–5.

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98: 10344–9.

    Article  CAS  PubMed  Google Scholar 

  • Pandur P, Lasche M, Eisenberg L M et al (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418: 636–41.

    Article  CAS  PubMed  Google Scholar 

  • Pesce M, Farrace M G, Piacentini M et al (1993) Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118: 1089–94.

    CAS  PubMed  Google Scholar 

  • Quaini F, Urbanek K, Beltrami A P et al (2002) Chimerism of the transplanted heart. N Engl J Med 346: 5–15.

    Article  PubMed  Google Scholar 

  • Rehman J, Li J, Orschell C M et al (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–9.

    Article  PubMed  Google Scholar 

  • Rohde E, Bartmann C, Schallmoser K et al (2007) Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 25: 1746–52.

    Article  CAS  PubMed  Google Scholar 

  • Rohde E, Malischnik C, Thaler D et al (2006) Blood monocytes mimic endothelial progenitor cells. Stem Cells 24: 357–67.

    Article  PubMed  Google Scholar 

  • Romagnani P, Annunziato F, Liotta F et al (2005) CD14 + CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97: 314–22.

    Article  CAS  PubMed  Google Scholar 

  • Rota M, LeCapitaine N, Hosoda T et al (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99: 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Scheper W and Copray S (2009) The molecular mechanism of induced pluripotency: a two-stage switch. Stem Cell Rev Rep 5: 204–23.

    Article  CAS  Google Scholar 

  • Seeger F H, Tonn T, Krzossok N et al (2007a) Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 28: 766–72.

    Article  PubMed  Google Scholar 

  • Seeger F H, Zeiher A M and Dimmeler S (2007b) Cell-enhancement strategies for the treatment of ischemic heart disease. Nat Clin Pract Cardiovasc Med 4 Suppl 1: S110–3.

    Article  CAS  PubMed  Google Scholar 

  • Shenje L T, Field L J, Pritchard C A et al (2008) Lineage tracing of cardiac explant derived cells. PLoS One 3: e1929.

    Article  PubMed  CAS  Google Scholar 

  • Smith R R, Barile L, Cho H C et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115: 896–908.

    Article  PubMed  CAS  Google Scholar 

  • Smits A M, van den Hengel L G, van den Brink S et al (2009a) A new in vitro model for stem cell differentiation and interaction. Stem Cell Res 2: 108–12.

    Article  CAS  PubMed  Google Scholar 

  • Smits A M, van Laake L W, den Ouden K et al (2009b) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83: 527–35.

    Article  CAS  PubMed  Google Scholar 

  • Smits A M, van Vliet P, Metz C H et al (2009c) Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4: 232–43.

    Article  CAS  PubMed  Google Scholar 

  • Sussman M A and Anversa P (2004) Myocardial aging and senescence: where have the stem cells gone? Annu Rev Physiol 66: 29–48.

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh S, Rocheteau P and Le Roux I (2009) Asymmetric cell divisions and asymmetric cell fates. Annu Rev Cell Dev Biol 25: 671–99.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–76.

    Article  CAS  PubMed  Google Scholar 

  • Tallini Y N, Greene K S, Craven M et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106: 1808–13.

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Ashihara E, Honsho S et al (2007) Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 352: 635–41.

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Bauersachs J, Poole-Wilson P A et al (2005) The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J Am Coll Cardiol 46: 1799–802.

    Article  CAS  PubMed  Google Scholar 

  • Tillmanns J, Rota M, Hosoda T et al (2008) Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci USA 105: 1668–73.

    Article  CAS  PubMed  Google Scholar 

  • Torella D, Rota M, Nurzynska D et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94: 514–24.

    Article  CAS  PubMed  Google Scholar 

  • Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103: 9226–31.

    Article  CAS  PubMed  Google Scholar 

  • Urbanek K, Torella D, Sheikh F et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102: 8692–7.

    Article  CAS  PubMed  Google Scholar 

  • Urbich C and Dimmeler S (2005) Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney Int 67: 1672–6.

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Heeschen C, Aicher A et al (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108: 2511–6. Epub 2003 Oct 27.

    Article  PubMed  Google Scholar 

  • Urbich C, Knau A, Fichtlscherer S et al (2005) FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. Faseb J 19: 974–6.

    CAS  PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1–7.

    Article  CAS  PubMed  Google Scholar 

  • Wandzioch E, Edling C E, Palmer R H et al (2004) Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood 104: 51–7.

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke A E, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–3.

    Article  CAS  PubMed  Google Scholar 

  • Wu M T, Su M Y, Huang Y L et al (2009) Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac MR: correlation with left ventricular structure and function. Circ Cardiovasc Imaging 2: 32–40, 6 p following 40.

    Article  PubMed  Google Scholar 

  • Wu S M, Fujiwara Y, Cibulsky S M et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137–50.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Soonpaa M H, Adler E D et al (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453: 524–8.

    Article  CAS  PubMed  Google Scholar 

  • Yoon C H, Hur J, Park K W et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112: 1618–27.

    Article  PubMed  Google Scholar 

  • Zelarayan L C, Noack C, Sekkali B et al (2008) Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci USA 105: 19762–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wilson G F, Soerens A G et al (2009a) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104: e30–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ingram D A, Murphy M P et al (2009b) Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 296: H1675–82.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Dai T, Zhou B et al (2008) SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis.201(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Fu G, Dai T et al (2007) Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 50: 274–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454: 109–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Acton P D and Ferrari V A (2006) Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 48: 2094–106.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Pesce, M., Pompilio, G., Gambini, E., Capogrossi, M.C. (2011). Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_12

Download citation

Publish with us

Policies and ethics