Skip to main content

History of Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Generation and regeneration as an answer to disease are far from being a new idea. Philosophers, naturalists and scientists were intrigued by the marvels of regeneration seen in nature. By the middle of the nineties life scientists thought we were only a few years away from bioartificial organs grown in a Petri dish. However, by the dawn of the new millennium it became clear that the mechanistic approach dictated by tissue engineering so far, had neglected issues of vascularization. Processes of angiogenesis were central to homeostasis, bioassimilation and biointegration of tissue engineered constructs. Furthermore, the field of tissue engineering had evolved into something vast, encompassing satellite technologies that were becoming separate science sectors. Advances in genetical engineering, stem cell biology, cloning, biomaterials and biomedical devices to name a few, would come to play a major role of their own – tissue engineering had become a part of a bigger whole. Regenerative medicine is the collective field to shelter these technologies “…that seeks to develop functional cell, tissue, and organ substitutes to repair, replace or enhance biological function that has been lost due to congenital abnormalities, injury, disease, or aging”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Now the phenomenon of desquamation of the intestinal epithelium and the epidermis has been described. The intestinal epithelium is completely regenerated in 4–5 days. The total regeneration of the epidermis takes 4 weeks. This may mean that for a life expectancy of 77 years, the human epidermis is regenerated 1,000 times.

References

  • Aeschylus, Prometheus bound. 415 BC.

    Google Scholar 

  • Andrews, P.W., Human teratocarcinomas. Biochim Biophys Acta, 1988. 948(1): p. 17–36.

    CAS  PubMed  Google Scholar 

  • Aristotle, The complete works: the revised Oxford edition. Bollingen series LXXI.2, ed. J. Barnes. 1984 Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Arnst, C. and J. Carey, Biotech bodies, in Bus Week. 1998. p. 56.

    Google Scholar 

  • Asenjo, A., Neurosurgical techniques. 1963, Springfield: Charles C Thomas.

    Google Scholar 

  • Barth, A., Ueber histologische Befunde nach Knochenimplantationen. Arch Klin Chir, 1893. 46: p. 409–417.

    Google Scholar 

  • Beier, J.P., D. Klumpp, M. Rudisile, R. Dersch, J.H. Wendorff, O. Bleiziffer, A. Arkudas, E. Polykandriotis, R.E. Horch, and U. Kneser, Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol, 2009. 9: p. 34.

    Article  PubMed  Google Scholar 

  • Bell, E., H.P. Ehrlich, D.J. Buttle, and T. Nakatsuji, Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science, 1981. 211(4486): p. 1052–4.

    Article  CAS  PubMed  Google Scholar 

  • California proposition 71 (2004). Wikipedia (cited 2009 10 August).

    Google Scholar 

  • Caplan, A.I., The mesengenic process. Clin Plast Surg, 1994. 21(3): p. 429–35.

    CAS  PubMed  Google Scholar 

  • Carpue, J., An account of two successful operations for restoring a lost nose from the Integuments of the forehead., in Classics of Medicine Library. 1981(1816): Birmingham.

    Google Scholar 

  • Coleman, W., Biology in the nineteenth century: Problems of form, function and transformation. 2nd ed. Cambridge History of Science Series. 1978: Cambridge University Press.

    Google Scholar 

  • Daar, A.S. and H.L. Greenwood, A proposed definition of regenerative medicine. J Tissue Eng Regen Med, 2007. 1(3): p. 179–84.

    Article  CAS  PubMed  Google Scholar 

  • Damjanov, I., Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int J Dev Biol, 1993. 37(1): p. 39–46.

    CAS  PubMed  Google Scholar 

  • Dinsmore, E., A history of regeneration research: Milestones in the evolution of a science. 1991: Cambridge University Press.

    Google Scholar 

  • Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154–6.

    Article  CAS  PubMed  Google Scholar 

  • Goldwyn, R.M., Johann Friedrich Dieffenbach (1794–1847). Plast Reconstr Surg, 1968. 42(1): p. 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Guillot, P.V., W. Cui, N.M. Fisk, and D.J. Polak, Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med, 2007. 11(5): p. 935–44.

    Article  CAS  PubMed  Google Scholar 

  • Hayflick, L., Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet, 2007. 3(12): p. e220.

    Article  PubMed  Google Scholar 

  • Horch, R.E., H. Bannasch, and G.B. Stark, Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds. Transplant Proc, 2001. 33(1–2): p. 642–4.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, L.R., The future of multihospital systems. Top Health Care Financ, 1992. 18(4): p. 32–45.

    CAS  PubMed  Google Scholar 

  • Kemp, P., History of regenerative medicine: looking backwards to move forwards. Regen Med, 2006. 1(5): p. 653–69.

    Article  PubMed  Google Scholar 

  • Kleinsmith, L.J. and G.B. Pierce, Jr., Multipotentiality of single embryonal carcinoma cells. Cancer Res, 1964. 24: p. 1544–51.

    CAS  PubMed  Google Scholar 

  • Kratz, G. and F. Huss., Tissue engineering – body parts from the Petri dish. Scand J Surg, 2003. 92(4): p. 241–7.

    CAS  PubMed  Google Scholar 

  • Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920–6.

    Article  CAS  PubMed  Google Scholar 

  • Leff, D., New biological assembly line, in the cell: interand intra-relationships. 1983, Avery Publishing Group: New Jersey.

    Google Scholar 

  • Longmate, B., Curious chirurgical operation: New nose. Gentlemen’s Magazine and Historical Chronicle, 1794. 64: p. 891

    Google Scholar 

  • Lysaght, M.J. and J. Crager, Origins. Tissue Eng Part A, 2009. 15(7): p. 1449–50.

    Article  Google Scholar 

  • Lysaght, M.J. and A.L. Hazlehurst, Tissue engineering: the end of the beginning. Tissue Eng, 2004. 10(1–2): p. 309–20.

    Article  PubMed  Google Scholar 

  • Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981. 78(12): p. 7634–8.

    Article  CAS  PubMed  Google Scholar 

  • Mason, C., Regenerative medicine 2.0. Regen Med, 2007. 2(1): p. 11–8.

    Article  PubMed  Google Scholar 

  • Mason, C. and P. Dunnill, The strong financial case for regenerative medicine and the regen industry. Regen Med, 2008. 3(3): p. 351–63.

    Article  PubMed  Google Scholar 

  • Matsuda, T., T. Akutsu, K. Kira, and H. Matsumoto, Development of hybrid compliant graft: rapid preparative method for reconstruction of a vascular wall. ASAIO Trans, 1989. 35(3): p. 553–5.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, L.G., SS. cosmas and damian – Patron Saints of medicine and pharmacy their cult in England. Med Hist, 1968. 12(3): p. 281–8.

    Google Scholar 

  • Moffatt, S.L., V.A. Cartwright, and T.H. Stumpf, Centennial review of corneal transplantation. Clin Exp Ophthalmol, 2005. 33(6): p. 642–57.

    Article  PubMed  Google Scholar 

  • Mooney, D.J. and A.G. Mikos, Growing new organs. Sci Am, 1999. 280(4): p. 60–5.

    Article  CAS  PubMed  Google Scholar 

  • Nerem, R.M., Tissue engineering in the USA. Med Biol Eng Comput, 1992. 30(4): p. CE8–12.

    Article  CAS  PubMed  Google Scholar 

  • Newth, D., New (and better?) parts for old. In New Biology, M. Johnson, M. Abercrombie, and G. Fogg, Editors. 1958, Harmondsworth (UK): Penguin Books: London.

    Google Scholar 

  • Old Lestament, Genesis. I:1. p. 21–22.

    Google Scholar 

  • Papaioannou, V.E., M.W. McBurney, R.L. Gardner, and M.J. Evans, Fate of teratocarcinoma cells injected into early mouse embryos. Nature, 1975. 258(5530): p. 70–73.

    Article  CAS  PubMed  Google Scholar 

  • Pera, M.F., S. Cooper, J. Mills, and J.M. Parrington, Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation, 1989. 42(1): p. 10–23.

    Article  CAS  PubMed  Google Scholar 

  • Petrakova, K.V., A.A. Tolmacheva, and F. AIa (Bone formation occurring in bone marrow transplantation in diffusion chambers). Biull Eksp Biol Med, 1963. 56: p. 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Polykandriotis, E., A. Arkudas, R.E. Horch, M. Sturzl, and U. Kneser, Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med, 2007. 11(1): p. 6–20.

    Article  CAS  PubMed  Google Scholar 

  • Polykandriotis, E., J. Tjiawi, S. Euler, A. Arkudas, A. Hess, K. Brune, P. Greil, A. Lametschwandtner, R.E. Horch, and U. Kneser, The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res, 2008. 75(1): p. 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Santayana, G., Reason in common sense, in The life of reason. 1905, Charles Scribner’s Sons: New York. p. 284.

    Google Scholar 

  • Skalak, R. and C. Fox, Tissue engineering. Proceedings of a workshop held at Granlibakken, Lake Tahoe, California. 1989, New York: Liss.

    Google Scholar 

  • Stocum, D., An overview of regenerative biology and medicine, in Regenerative biology and medicine. 2006, Academic: Oxford. p. 1–20.

    Chapter  Google Scholar 

  • Thomson, J.A., J. Kalishman, T.G. Golos, M. Durning, C.P. Harris, and J.P. Hearn, Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod, 1996. 55(2): p. 254–9.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145–7.

    Article  CAS  PubMed  Google Scholar 

  • Vacanti, C.A., The history of tissue engineering. J Cell Mol Med, 2006. 10(3): p. 569–76.

    Article  PubMed  Google Scholar 

  • Vacanti, J.P., R. Langer, J. Upton, and J.J. Marler, Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev, 1998. 33(1–2): p. 165–182.

    PubMed  Google Scholar 

  • Weaver, C.V. and D.J. Garry, Regenerative biology: a historical perspective and modern applications. Regen Med, 2008. 3(1): p. 63–82.

    Article  CAS  PubMed  Google Scholar 

  • What will be the 10 hottest jobs? (cited 2009 08.20); Available from: http://www.time.com/time/reports/v21/work/mag_ten_hottest_jobs.html.

  • Wilmut, I., A.E. Schnieke, J. McWhir, A.J. Kind, and K.H. Campbell, Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385(6619): p. 810–3.

    Article  CAS  PubMed  Google Scholar 

  • Witkowski, J.A., Dr. Carrel’s immortal cells. Med Hist, 1980. 24(2): p. 129–42.

    CAS  PubMed  Google Scholar 

  • Wohlrab, F. and U. Henoch, The life and work of Carl Weigert (1845–1904) in Leipzig 1878–1885. Zentralbl Allg Pathol, 1988. 134: p. 743–751.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymund E. Horch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Horch, R.E., Popescu, L.M., Polykandriotis, E. (2011). History of Regenerative Medicine. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_1

Download citation

Publish with us

Policies and ethics