Skip to main content

Current Research Concerning the RAS in Pancreatic Stem Cells

  • Chapter
  • First Online:
The Renin-Angiotensin System: Current Research Progress in The Pancreas

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 690))

Abstract

The explosion in the prevalence of diabetes mellitus has expanded beyond the Western world into Asian countries such as China. Given the complication of diabetes, this expanding prevalence carries an attendant medical, social and financial burden for countries with afflicted populations. Central to the pathogenesis of diabetes mellitus is a state of insulin insufficiency, either absolute in the case of type 1 (T1DM) or relative in the case of type 2 (T2DM). The administration of exogenous insulin contributes to the management of T2DM, and has become the mainstay of treatment in T1DM. However, this therapy brings with it a substantial social and lifestyle impact. It is in this context that recent success in the islet transplantation field offers promise for diabetic patients. A lack of availability of human donor islets for transplantation, however, hampers the development and implementation of such novel therapeutic strategies. A new source of such cells must be identified and, in this context, the induction of either embryonic or somatic stem cell differentiation into islet cells offers hope. Embryonic stem cells (ESCs) display features suggesting that their differentiation into pancreatic insulin-producing cells may be possible. However, the true origin of insulin release from these cells is uncertain, and it remains a concern that such cells may have tumorigenic properties. Stem cells derived from the pancreas itself, however, might offer an exciting alternative. That such cells exist suggests that the endocrine pancreas is capable of regeneration long into adulthood. The potential use of pancreatic stem cells (PSCs) as a source of mature islet cells has recently been fuelled by the demonstration that such cells may be induced to differentiate into islet-like cell clusters (ICCs). Nevertheless, these putative islets have so far failed to achieve full maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann AM and Gannon M. Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol 38:193–206, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Atouf F, Park CH, Pechhold K, Ta M, Choi Y and Lumelsky NL. No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56:699–702, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B and Scharfmann R. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248–1258, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Baetge EE. Production of beta-cells from human embryonic stem cells. Diabetes Obes Metab 10(Suppl 4):186–194, 2008.

    Article  PubMed  Google Scholar 

  • Bai L, Meredith G and Tuch BE. Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. J Endocrinol 186:343–352, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I and Ferber S. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S and Scharfmann R. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128:5109–5117, 2001.

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T and Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5(Suppl):16–22, 2004.

    Article  PubMed  Google Scholar 

  • Chan YC and Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther 323:10–18, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Wang X, Niu D, Zhang Z, Zhao H and Gong F. Mesenchymal stem cells adopt beta-cell fate upon diabetic pancreatic microenvironment. Pancreas 38:275–281, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chase LG, Ulloa-Montoya F, Kidder BL and Verfaillie CM. Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56:3–7, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chen YW, Tran S, Chenier I, Chan JS, Ingelfinger JR, Inagami T and Zhang SL. Deficiency of intrarenal angiotensin II type 2 receptor impairs paired homeo box-2 and N-myc expression during nephrogenesis. Pediatr Nephrol 23:1769–1777, 2008.

    Article  PubMed  Google Scholar 

  • Cheng Q, Law PK, de Gasparo M and Leung PS. Combination of the dipeptidyl peptidase IV inhibitor LAF237 with the angiotensin II type 1 receptor antagonist valsartan enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes. J Pharmacol Exp Ther 327:683–691, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Chow L, Rezmann L, Imamura K, Wang L, Catt K, Tikellis C, Louis WJ, Frauman AG and Louis SN. Functional angiotensin II type 2 receptors inhibit growth factor signaling in LNCaP and PC3 prostate cancer cell lines. Prostate 68:651–660, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Chu KY, Lau T, Carlsson PO and Leung PS. Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes 55:367–374, 2006.

    Article  PubMed  CAS  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK and Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401, 2006.

    Article  PubMed  Google Scholar 

  • Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B and Gershengorn MC. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25:3215–3222, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Dong QY, Chen L, Gao GQ, Wang L, Song J, Chen B, Xu YX and Sun L. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin Invest Med 31:E328–E337, 2008.

    PubMed  CAS  Google Scholar 

  • Dor Y and Melton DA. Facultative endocrine progenitor cells in the adult pancreas. Cell 132:183–194, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Duvillié B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A and Scharfmann R. The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 55:582–589, 2006.

    Article  PubMed  Google Scholar 

  • Escobar E, Rodríguez-Reyna TS, Arrieta O and Sotelo J. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol 2:385–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, Marchetti P, Dotta F and Sorrentino V. Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ 14:1860–1871, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Grove KL, Mayo RJ, Forsyth CS, Frank AA and Speth RC. Fosinopril treatment of pregnant rats: developmental toxicity, fetal angiotensin-converting enzyme inhibition, and fetal angiotensin II receptor regulation. Toxicol Lett 80:85–95, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Halme DG and Kessler DA. FDA regulation of stem-cell-based therapies. N Engl J Med 355:1730–1735, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Han HJ, Heo JS and Lee YJ. ANG II increases 2-deoxyglucose uptake in mouse embryonic stem cells. Life Sci 77:1916–1933, 2005.

    Article  PubMed  CAS  Google Scholar 

  • HÃ¥rd AL, Wennerholm UB, Niklasson A and Hellström A. Severe ROP in twins after blockage of the renin-angiotensin system during gestation. Acta Paediatr 97:1142–1154, 2008.

    Article  PubMed  Google Scholar 

  • Hori Y, Fukumoto M and Kuroda Y. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin-1 (CD133) and platelet-derived growth factor receptor beta. Stem Cells 26:2912–2920, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Huang H and Tang X. Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas. Lab Invest 83:539–547, 2003.

    PubMed  CAS  Google Scholar 

  • Huang W, Yu LF, Zhong J, Qiao MM, Jiang FX, Du F, Tian XL and Wu YL. Angiotensin II type 1 receptor expression in human gastric cancer and induces MMP2 and MMP9 expression in MKN-28 cells. Dig Dis Sci 53:163–168, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Yu J, Toselli P, Bhawan J, Sudireddy V, Taylor L and Polgar P. Angiotensin II type 1 and bradykinin B2 receptors expressed in early stage epithelial cells derived from human embryonic stem cells. J Cell Physiol 211:816–825, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Savary K, Gasc JM and Corvol P. The hematopoietic system: a new niche for the renin-angiotensin system. Nat Clin Pract Cardiovasc Med 3:80–85, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey RK, Bucay N, Beattie GM, Lopez A, Messam CA, Cirulli V and Hayek A. Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas. Diabetes 52:2519–2525, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ino K, Shibata K, Kajiyama H, Nawa A, Nomura S and Kikkawa F. Manipulating the angiotensin system: new approaches to the treatment of solid tumours. Expert Opin Biol Ther 6:243–255, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G and Majumdar AS. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953, 2007a.

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M, Li D and Deng H. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344, 2007b.

    Article  PubMed  CAS  Google Scholar 

  • Jokubaitis VJ, Sinka L, Driessen R, Whitty G, Haylock DN, Bertoncello I, Smith I, Péault B, Tavian M and Simmons PJ. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111:4055–4063, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kampf C, Lau T, Olsson R, Leung PS and Carlsson PO. Angiotensin II type 1 receptor inhibition markedly improves the blood perfusion, oxygen tension and first phase of glucose-stimulated insulin secretion in revascularised syngeneic mouse islet grafts. Diabetologia 48:1159–1167, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Ishida J, Imagawa S, Saito T, Suzuki N, Matsuoka T, Sugaya T, Tanimoto K, Yokoo T, Ohneda O, Sugiyama F, Yagami K, Fujita T, Yamamoto M, Nangaku M and Fukamizu A. Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. FASEB J 19:2023–2035, 2005.

    PubMed  CAS  Google Scholar 

  • Kayali AG, Flores LE, Lopez AD, Kutlu B, Baetge E, Kitamura R, Hao E, Beattie GM and Hayek A. Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56:703–718, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kim YH and Han HJ. Synergistic effect of high glucose and ANG II on proliferation of mouse embryonic stem cells: involvement of PKC and MAPKs as well as AT1 receptor. J Cell Physiol 215:374–382, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Imanishi T and Akasaka T. Endothelial progenitor cell differentiation and senescence in an angiotensin II-infusion rat model. Hypertens Res 29:449–355, 2006.

    Google Scholar 

  • Koblas T, Pektorova L, Zacharovova K, Berkova Z, Girman P, Dovolilova E, Karasova L and Saudek F. Differentiation of CD133-positive pancreatic cells into insulin-producing islet-like cell clusters. Transplant Proc 40:415–428, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK and Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lam KY and Leung PS. Regulation and expression of a renin-angiotensin system in human pancreas and pancreatic endocrine tumours. Eur J Endocrinol 146:567–572, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lau ST and Leung PS. Role of the RAS in pancreatic cancer. Curr Cancer Drug Targets (in press), 2010.

    Google Scholar 

  • León-Quinto T, Jones J, Skoudy A, Burcin M and Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47:1442–1451, 2004.

    Article  PubMed  Google Scholar 

  • Leung KK, Ma MT and Leung PS. Involvement of the renin-angiotensin system in the growth and differentiation of human pancreatic progenitor cells. Gordon Research Conferences – Angiotensin. 24–29 February, 2008. Ventura, CA, 2008.

    Google Scholar 

  • Leung KK, Suen PM, Lau TK, Ko WH, Yao KM and Leung PS. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization. Stem Cells Dev 18:979–990, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 18:134S–141S, 2005.

    Article  PubMed  CAS  Google Scholar 

  • List JF and Habener JF. Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells. Am J Physiol 286:E875–E891, 2004.

    CAS  Google Scholar 

  • Liu HW, Cheng B, Fu XB, Sun TZ and Li JF. Characterization of AT1 and AT2 receptor expression profiles in human skin during fetal life. J Dermatol Sci 46:221–235, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Matsusaka T, Miyazaki Y and Ichikawa I. The renin angiotensin system and kidney development. Annu Rev Physiol 64:551–561, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Wu Y, Okamoto Y, Pratt RE and Dzau VJ. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 48:1095–1102, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Minami K and Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Front Biosci 13:5824–5837, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Iwai M and Horiuchi M. Emerging concept of adipogenesis regulation by the renin-angiotensin system. Hypertension 48:1020–1032, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Morton RA, Geras-Raaka E, Wilson LM, Raaka BM and Gershengorn MC. Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol 270:87–93, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Moss LG and Rhodes CJ. Beta-cell regeneration: epithelial mesenchymal transition pre-EMTpted by lineage tracing? Diabetes 56:281–292, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development 134:427–438, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N and Taniguchi H. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132:720–732, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A and Dunn NR. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16:561–578, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Pope JC, Brock JW, Adams MC, Miyazaki Y, Stephens FD and Ichikawa I. Congenital anomalies of the kidney and urinary tract: role of the loss of function mutation in the pluripotent angiotensin type 2 receptor gene. J Urol 165:196–202, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pope JC, Nishimura H and Ichikawa I. Role of angiotensin in the development of the kidney and urinary tract. Nephrologie 19:433–446, 1998.

    PubMed  CAS  Google Scholar 

  • Quan A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev 82:233–238, 2006.

    Google Scholar 

  • Rickels MR, Mueller R, Markmann JF and Naji A. Effect of glucagon-like peptide-1 on β- and α-cell function in isolated islet and whole pancreas transplant recipients. J Clin Endocrinol Metab 94:181–189, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz SA and Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927, 2008.

    Article  PubMed  Google Scholar 

  • Sagawa K, Nagatani K, Komagata Y and Yamamoto K. Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum 52:1920–1928, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sanada F, Taniyama Y, Iekushi K, Azuma J, Okayama K, Kusunoki H, Koibuchi N, Doi T, Aizawa Y and Morishita R. Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells. Circ Res 105:667–675, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez SI, Seltzer AM, Fuentes LB, Forneris ML and Ciuffo GM. Inhibition of angiotensin II receptors during pregnancy induces malformations in developing rat kidney. Eur J Pharmacol 588:114–123, 2008.

    Article  PubMed  Google Scholar 

  • Savary K, Michaud A, Favier J, Larger E, Corvol P and Gasc JM. Role of the renin-angiotensin system in primitive erythropoiesis in the chick embryo. Blood 105:103–110, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Scharfmann R, Duvillie B, Stetsyuk V, Attali M, Filhoulaud G and Guillemain G. Beta-cell development: the role of intercellular signals. Diabetes Obes Metab 10(Suppl 4):195–200, 2008.

    Article  PubMed  Google Scholar 

  • Schütz S, Le Moullec JM, Corvol P and Gasc JM. Early expression of all the components of the renin-angiotensin-system in human development. Am J Pathol 149:2067–2079, 1996.

    PubMed  Google Scholar 

  • Seeberger KL, Eshpeter A, Rajotte RV and Korbutt GS. Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial-mesenchymal transition is an artifact of cell culture. Lab Invest 89:110–121, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Serreau R, Luton D, Macher MA, Delezoide AL, Garel C and Jacqz-Aigrain E. Developmental toxicity of the angiotensin II type 1 receptor antagonists during human pregnancy: a report of 10 cases. BJOG 112:710–722, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Setty Y, Cohen IR, Dor Y and Harel D. Four-dimensional realistic modeling of pancreatic organogenesis. Proc Natl Acad Sci USA 105:20374–20389, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shi RZ, Wang JC, Huang SH, Wang XJ and Li QP. Angiotensin II induces vascular endothelial growth factor synthesis in mesenchymal stem cells. Exp Cell Res 315:10–25, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R and Kim JH. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238, 2004.

    Article  Google Scholar 

  • Stadtfeld M, Brennand K and Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18:890–904, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Stanojevic V, Yao KM and Thomas MK. The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1). Mol Cell Endocrinol 237:67–74, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Steckelings UM, Henz BM, Wiehstutz S, Unger T and Artuc M. Differential expression of angiotensin receptors in human cutaneous wound healing. Br J Dermatol 153:887–893, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Suen PM, Li K, Chan JC and Leung PS. In vivo treatment with glucagon-like peptide 1 promotes the graft function of fetal islet-like cell clusters in transplanted mice. Int J Biochem Cell Biol 38:951–960, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Suen PM, Zou C, Zhang YA, Lau TK, Chan J, Yao KM and Leung PS. PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 40:789–803, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Rodriguez RT, McLean GW and Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci USA 104:175–180, 2007a.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Furuta T, Shirai N, Kodaira C, Nishino M, Ikuma M, Sugimura H and Hishida A. Role of angiotensinogen gene polymorphism on Helicobacter pylori infection-related gastric cancer risk in Japanese. Carcinogenesis 28:2036–2050, 2007b.

    Article  PubMed  CAS  Google Scholar 

  • Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, Chun JM, Lee SK and Kim SJ. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc 40:2629–2654, 2008.

    Article  Google Scholar 

  • Tateishi K, He J, Taranova O, Liang G, D’Alessio AC and Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Teta M, Rankin MM, Long SY, Stein GM and Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12:817–826, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ueno H, Yamada Y, Watanabe R, Mukai E, Hosokawa M, Takahashi A, Hamasaki A, Fujiwara H, Toyokuni S, Yamaguchi M, Takeda J and Seino Y. Nestin-positive cells in adult pancreas express amylase and endocrine precursor cells. Pancreas 31:126–131, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Valenti MT, Dalle Carbonare L, Donatelli L, Bertoldo F, Zanatta M and Lo Cascio V. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 43:1084–1092, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM and Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35:601–610, 2006.

    Article  PubMed  Google Scholar 

  • Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E and Burt RK. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297:1568–1576, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Weir C, Morel-Kopp MC, Gill A, Tinworth K, Ladd L, Hunyor SN and Ward C. Mesenchymal stem cells: isolation, characterisation and in vivo fluorescent dye tracking. Heart Lung Circ 17:395–403, 2008.

    Article  PubMed  Google Scholar 

  • Wu F, Jagir M and Powell JS. Long-term correction of hyperglycemia in diabetic mice after implantation of cultured human cells derived from fetal pancreas. Pancreas 29:e23–e39, 2004.

    Article  PubMed  Google Scholar 

  • Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G and Heimberg H. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Xu YX, Chen L, Wang R, Hou WK, Lin P, Sun L, Sun Y and Dong QY. Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses 71:390–403, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yue F, Cui L, Johkura K, Ogiwara N and Sasaki K. Glucagon-like peptide-1 differentiation of primate embryonic stem cells into insulin-producing cells. Tissue Eng 12:2105–2116, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zalzman M, Anker-Kitai L and Efrat S. Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54:2568–2575, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Tokui Y, Yamagata K, Kozawa J, Sayama K, Iwahashi H, Okita K, Miuchi M, Konya H, Hamaguchi T, Namba M, Shimomura I and Miyagawa JI. Continuous stimulation of human glucagons-like peptide-1 (7–36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 50:1900–1909, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Moini B and Ingelfinger JR. Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Sing Leung PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leung, P.S. (2010). Current Research Concerning the RAS in Pancreatic Stem Cells. In: The Renin-Angiotensin System: Current Research Progress in The Pancreas. Advances in Experimental Medicine and Biology, vol 690. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9060-7_9

Download citation

Publish with us

Policies and ethics