Skip to main content

Effect of Disruption of mglA on the Virulence and Immunogenicity of the Francisella tularensis Live Vaccine Strain (LVS)

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms

Abstract

MglA (Macrophage Growth Locus A) is a pleiotropic transcription factor controlling the expression pattern of more than 100 genes in Francisella novicida, including all the ORFs located on the pathogenicity island. To further probe the role of MglA in the pathogenicity of the related strain Francisella tularensis LVS, we generated a mutant LVS strain in which the mglA locus was disrupted by insertion of a non-polar selectable marker cassette.

In vitro and in vivo analysis of the phenotype associated with the mglA null mutation in comparison to the wild-type parental strain and to a complementation strain (ΔmglA:mglA), established that the mutated strain ΔmglA: (i) cannot multiply in vitro in macrophages, (ii) is severely attenuated in a murine model of infection, exhibiting over 10,000 and 10,000,000 fold decrease in virulence by intranasal (IN) administration, and intraperitoneal (IP) route of infection respectively, (iii) unlike wild type LVS, the mutant strain cannot multiply in the lungs, liver and spleen of infected animals following IP administration, (iv) the ΔmglA mutant do not disseminate to target organs (e.g. liver and spleen) following IN administration, (v) Infection by ΔmglA bacteria elicits a significant humoral response, and systemic IP administration of high doses of ΔmglA cells results in full protection of animals against a subsequent IP challenge with high doses of the virulent wild-type strain.

These results indicate that MglA plays a major role in F. tularensis LVS virulence as previously shown for F. novicida. Our studies suggest that inactivation of MglA may serve as a platform for the development of an improved attenuated vaccine of virulent F. tularensis strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron, G. S. & Nano, F. E. (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol, 29, 247–59.

    Article  PubMed  CAS  Google Scholar 

  • Ben Nasr, A., Haithcoat, J., Masterson, J. E., Gunn, J. S., Eaves-Pyles, T. & Klimpel, G. R. (2006) Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukoc Biol, 80, 774–86.

    Article  PubMed  CAS  Google Scholar 

  • Bonquist, L., Lindgren, H., Golovliov, I., Guina, T. & Sjöstedt, A. (2008) MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun, 76, 3502–10.

    Article  PubMed  Google Scholar 

  • Brotcke, A., Weiss, D. S., Kim, C. C., Chain, P., Malfatti, S., Garcia, E. & Monack, D. M. (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun, 74, 6642–55.

    Article  PubMed  CAS  Google Scholar 

  • Buddingh, G. J. & Womack, F. C. (1941) Observations on the infection of chick embryos with Bacterium Tularense, Brucella, and Pasteurella Pestis. J Exp Med, 74, 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Charity, J. C., Costante-Hamm, M. M., Balon, E. L., Boyd, D. H., Rubin, E. J. & Dove, S. L. (2007) Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog, 3, e84.

    Article  PubMed  Google Scholar 

  • Conlan, J. W. & Oyston, P. C. (2007) Vaccines against Francisella tularensis. Ann NY Acad Sci, 1105, 325–50.

    Article  CAS  Google Scholar 

  • Councilman, W. T. S. & Strong, R. P (1921) Plague-like infections in rodents. Trans Assoc Am Phys., 36, 135–43.

    Google Scholar 

  • Ellis, J., Oyston, P. C., Green, M. & Titball, R. W. (2002) Tularemia. Clin Microbiol Rev, 15, 631–46.

    Article  PubMed  Google Scholar 

  • Forsman, M., Sandstrom, G. & Sjöstedt, A. (1994) Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol, 44, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Fortier, A. H., Green, S. J., Polsinelli, T., Jones, T. R., Crawford, R. M., Leiby, D. A., Elkins, K. L., Meltzer, M. S. & Nacy, C. A. (1994) Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol Ser, 60, 349–61.

    PubMed  CAS  Google Scholar 

  • Francis, E. E. (1927) Microscopic changes of tularemia in the tick, Dermacentor andersoni and the bedbug, Cimex lectularius. Pub Health Rep, 42, 2763–72.

    Article  Google Scholar 

  • Guina, T., Radulovic, D., Bahrami, A. J., Bolton, D. L., Rohmer, L., Jones-Isaac, K. A., Chen, J., Gallagher, L. A., Gallis, B., Ryu, S., Taylor, G. K., Brittnacher, M. J., Manoil, C. & Goodlett, D. R. (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol, 189, 6580–6.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, P., Oyston, P. C., Chain, P., Chu, M. C., Duffield, M., Fuxelius, H. H., Garcia, E., Halltorp, G., Johansson, D., Isherwood, K. E., Karp, P. D., Larsson, E., Liu, Y., Michell, S., Prior, J., Prior, R., Malfatti, S., Sjöstedt, A., Svensson, K., Thompson, N., Vergez, L., Wagg, J. K., Wren, B. W., Lindler, L. E., Andersson, S. G., Forsman, M. & Titball, R. W. (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet, 37, 153–9.

    Article  PubMed  CAS  Google Scholar 

  • Lauriano, C. M., Barker, J. R., Yoon, S. S., Nano, F. E., Arulanandam, B. P., Hassett, D. J. & Klose, K. E. (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci USA, 101, 4246–9.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, S. R., Mclendon, M. K., Apicella, M. A. & Jones, B. D. (2007) An in vitro model system used to study adherence and invasion of Francisella tularensis live vaccine strain in nonphagocytic cells. Infect Immun, 75, 3178–82.

    Article  PubMed  CAS  Google Scholar 

  • Mariathasan, S., Weiss, D. S., Dixit, V. M. & Monack, D. M. (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med, 202, 1043–9.

    Article  PubMed  CAS  Google Scholar 

  • Nano, F. E., Zhang, N., Cowley, S. C., Klose, K. E., Cheung, K. K., Roberts, M. J., Ludu, J. S., Letendre, G. W., Meierovics, A. I., Stephens, G. & Elkins, K. L. (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol, 186, 6430–6.

    Article  PubMed  CAS  Google Scholar 

  • Oyston, P. C., Sjöstedt, A. & Titball, R. W. (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol, 2, 967–78.

    Article  PubMed  CAS  Google Scholar 

  • Ritter, D. B. G. & Gerloff, R. K. (1966) Deoxyribonucleic acid hybridization among some species of the genus Pasteruella. J Bacteriol, 92, 1838–9.

    PubMed  CAS  Google Scholar 

  • Sandstrom, G., Sjöstedt, A., Johansson, T., Kuoppa, K. & Williams, J. C. (1992) Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol Immunol 5, 201–10.

    Article  PubMed  CAS  Google Scholar 

  • Santic, M., Molmeret, M., Klose, K. E., Jones, S. & Kwaik, Y. A. (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol, 7, 969–79.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, C. C. (1959) Nonacid-fast bacteria and HeLa cells: their uptake and subsequent intracellular growth. J Bacteriol, 77, 701–14.

    PubMed  CAS  Google Scholar 

  • Tigertt, W. D. (1962) Soviet viable Pasteurella tularensis vaccines. Bacterio Rev, 26, 354–73.

    CAS  Google Scholar 

  • West, T. E., Pelletier, M. R., Majure, M. C., Lembo, A., Hajjar, A. M. & Skerrett, S. J. (2008) Inhalation of Francisella novicida Delta mglA causes replicative infection that elicits innate and adaptive responses but is not protective against invasive pneumonic tularemia. Microbes Infect, 10, 773–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Cohen, O. et al. (2010). Effect of Disruption of mglA on the Virulence and Immunogenicity of the Francisella tularensis Live Vaccine Strain (LVS). In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_24

Download citation

Publish with us

Policies and ethics