Skip to main content

Proteomic Studies of Bacillus anthracis Reveal In Vitro CO2-Modulation and Expression During Infection of Extracellular Proteases

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms

Abstract

A comparative proteomic study of secretomes of virulent and avirulent Bacillus anthracis strains in various culturing conditions, including those encountered in the host (high CO2/bicarbonate), enabled identification of approximately 70 proteins representing collectively more than 99% of the secretome. In-vivo expression of 50 proteins was established by 2-dimension Western-analysis using anti B. anthracis immune sera. Many of the abundant proteins harbor features characteristic of virulence determinants and exhibit different patterns of expression. In minimal medium, virulent and avirulent B. anthracis strains manifest similar protein signatures and the metalloprotease NprA, (previously suggested to act in the context of a starvation-induced mechanism), represents 90% of the total secretome. Under high CO2/bicarbonate, NprA is repressed (possibly by a mechanism which preserves toxin integrity), while other proteins, including the bacterial toxins, are induced. One of the immunogens observed to be induced under high CO2-tension, was HtrA. We investigated the phenotype associated with disruption of HtrA by biochemical and proteomic approaches. The HtrA- bacteria are severely affected in their ability to respond to stress and fail to secrete the most abundant extracellular protease NprA. Most surprisingly, HtrA- cells do not possess the characteristic S-layer. This unique phenotype may have important implications for the role of HtrA in manifestation of B. anthracis virulence. Furthermore, the data show that distinct CO2/bicarbonate responsive chromosome-and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariel, N., Zvi, A., Grosfeld, H., Gat, O., Inbar, Y., Velan, B., Cohen, S. & Shafferman, A. (2002) Search for potential vaccine candidate ORFs in the B. anthracis virulence plasmid pXO1-in silico and in vitro screening. Infect Immun, 70(12), 6817–27.

    Article  PubMed  CAS  Google Scholar 

  • Ariel, N., Zvi, A., Makarova, K., Chitlaru, T., Elhanay, E., Velan, B., Cohen, S., Friedlander, A. & Shafferman, A. (2003) Genome-based bioinformatic selection of chromosomal B. anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun, 71(8), 4563–79.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, A. I., Bell, C. & Fulroth, B. (2005) Plasmid-encoded regulator of extracellular proteases in Bacillus anthracis. J Bacteriol, 187(9), 3133–38.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, K., Mogridge, J., Mourez, M., Collier, B. & Young, J. (2001) Identification of the cellular receptor for anthrax toxin. Nature, 414(6860), 225–29.

    Article  PubMed  CAS  Google Scholar 

  • Brossier, F., Levy, M. & Mock, M. (2002) Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun 70(2), 661–64.

    PubMed  CAS  Google Scholar 

  • Cendrowsky, S., Macarthur, W. & Hanna, P. (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51(2), 407–17.

    Article  Google Scholar 

  • Chitlaru, T., Ariel, N., Zvi, A., Lion, M., Velan, B., Shafferman, A. & Elhanany, E. (2004) Identification of chromosomally encoded membranal polypeptides of Bacillus anthracis by a proteomic analysis: prevalence of proteins containing S-layer homology domains. Proteomics, 4(3), 677–91.

    Article  PubMed  CAS  Google Scholar 

  • Chitlaru, T., Gat, O., Gozlan, Y., Ariel, N. & Shafferman, A. (2006) Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross-talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 188(10), 3551–71.

    Article  PubMed  CAS  Google Scholar 

  • Chitlaru, T., Gat. O., Gozlan, Y., Grosfeld, H., Inbar, I. & Shafferman, A. (2007) Identification of in vivo expressed immunogenic proteins by serological proteome analysis of Bacillus anthracis secretome. Infect Immun 75(6), 2841–52.

    Article  PubMed  CAS  Google Scholar 

  • Chitlaru, T. & Shafferman, A. (2009) Proteomic studies of Bacillus anthracis. Future Microbiol, 4(8), 983–98.

    Article  PubMed  CAS  Google Scholar 

  • Collier, R. J. (2009) Membrane translocation by anthrax toxin. Mol Aspects Med, 30, 413–22.

    Article  PubMed  CAS  Google Scholar 

  • Fellows, P. F., Linscott, M. K., Ivins, B. E., Pitt, M. L. M., Rossi, Gibbs, P. H. & Friedlander, A. M. (2001) Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin. Vaccine, 19(23–24), 3241–7.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, N., Sheraton-Rama, L., Herring-Palmer, A., Heffernan, B., Bergman, N. & Hanna, P. (2006) The dltABCD operon of Bacillus anthracis Sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity. J Bacteriol, 188(4), 1301–9.

    Article  PubMed  CAS  Google Scholar 

  • Fouet, A. & Mock, M. (2006) Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9(2), 160–6.

    Article  PubMed  CAS  Google Scholar 

  • Fouet, A. (2009) The surface of Bacillus anthracis. Mol Aspect Med, 30, 374–85.

    Article  CAS  Google Scholar 

  • Friedlander, A., Welkos, S. & Ivins, B. (2002) Anthrax Vaccines. Curr Top Microbiol Immun, 271, 34–60.

    Google Scholar 

  • Gat, O., Grosfeld, H., Ariel, N., Inbar, I., Zaide, G., Broder, Y., Zvi, A., Chitlaru, T., Altboum, Z., Stein, D., Cohen, S. & Shafferman, A. (2006) Search for Bacillus anthracis Potential Vaccine Candidates by a Functional Genomic-Serologic screen. Infect Immun, 74(7), 3987–4001.

    Article  PubMed  CAS  Google Scholar 

  • Gat, O., Grosfeld, H. & Shafferman, A. (2007) In vitro screen of bioinformatically selected Bacillus anthracis vaccine candidates by coupled transcription, translation and immunoprecipitation analysis. In vitro transcription and translation protocols. In: Grandi, G. (ed), Methods in molecular biology, Humana, Totowa, NJ, 375, pp. 211–33.

    Google Scholar 

  • Gat, O., Mendelson, I., Chitlaru, T., Ariel, N., Altboum, Z., Levy, H., Weiss, S., Grosfeld, H., Cohen, S. & Shafferman, A. (2005) The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant. Mol Microbiol, 58(2), 533–51.

    Article  PubMed  CAS  Google Scholar 

  • Gat, O., Zaide, G., Inbar, I., Grosfeld, H., Chitlaru, T., Levy, H. & Shafferman, A. (2008) Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol 70(4), 983–99.

    PubMed  CAS  Google Scholar 

  • Gohar M., Faegri, K., Perchat, S., Ravnum, S., Okstad, O. A., Gominet, M., Kolsto, A. B. & Lereclus, D. (2008) The PlcR virulence regulon of Bacillus cereus. PLoS One 3(7), e2793, doi. 10.1371.

    Article  PubMed  Google Scholar 

  • Lacy, T. M., & Collier, R. J. (2002) Structure and Function of Anthrax toxin. Curr Top Microbiol Immun, 271, 62–85.

    Google Scholar 

  • Leppla, S. (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Nat Acad Sci USA, 79(10), 3162–6.

    Article  PubMed  CAS  Google Scholar 

  • Leppla, S. H. (1995) Anthrax toxins. In Moss, J., Iglewski, B., Vaughan, M. & Tu, A. T. (ed.), Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, NY, pp. 543–72.

    Google Scholar 

  • Klimpel, K. R., Arora, N. & Leppla, S. H. (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol, 13(6), 1093–100.

    Article  PubMed  CAS  Google Scholar 

  • Koehler, T. M. (2009) Bacillus anthracis physiology and genetics. Molecular Aspects of Medicine 30(6), 386–396.

    Google Scholar 

  • Mesnage, S., Tosi-Couture, E., Mock, M., Gounon, P. & Fouet, A. (1997) Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23(6), 1147–55.

    Article  PubMed  CAS  Google Scholar 

  • Mignot, T., Mock, M., Robichon, D., Landier, A., Lereclus, D. & Fouet, A. (2001). The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol, 42(5), 1189–98.

    Article  PubMed  CAS  Google Scholar 

  • Mignot, T., Mock, M. & Fouet, A. (2003) A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol, 47(4), 917–27.

    Article  PubMed  CAS  Google Scholar 

  • Mock, M. & Fouet, A. (2001) Anthrax. Ann Rev Microbiol 55, 647-71.

    Article  CAS  Google Scholar 

  • Perchat, S., Gominet, M., Ramarao, N., Nielsen-Leroux, C., Gohar, M. & Lereclus, D. (2007) Characterization of a new quorum-sensing system in the Bacillus cereus group. Bacillus-ACT 2007, International Conference on B. anthracis, B. cereus and B. thuringiensis, Oslo, Norway.

    Google Scholar 

  • Perego, M. & HOCH, J. A. (2008) Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol, 16(5), 215–21.

    Article  PubMed  CAS  Google Scholar 

  • Sela-Abramovich, S., Chitlaru, T., Gat, O., Grosfeld, H., Cohen, O. & Shafferman, A. (2009) Novel and Unique Diagnostic Biomarkers for Bacillus anthracis Infection. Appl Environl Microbiol , 75(19), 6157–67.

    Article  CAS  Google Scholar 

  • Wilson, A. C., Soyer, M., Hoch, J. A. & Perego, M. (2008) The bicarbonate transporter is essential for Bacillus anthracis lethality. PLoS Pathogens 4(11), e1000210.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodor Chitlaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Chitlaru, T. et al. (2010). Proteomic Studies of Bacillus anthracis Reveal In Vitro CO2-Modulation and Expression During Infection of Extracellular Proteases. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_2

Download citation

Publish with us

Policies and ethics