Skip to main content

The Anthrax Capsule: Role in Pathogenesis and Target for Vaccines and Therapeutics

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms

Abstract

The polyglutamic acid capsule of Bacillus anthracis is a well-established virulence factor, conferring antiphagocytic properties on the bacillus. We have shown that the capsule also confers partial resistance to killing by human defensins. In our research we targeted the anthrax capsule for developing medical countermeasures, first using the capsule as a vaccine, similar to successful efforts with other bacteria, and secondly, by developing a novel therapeutic against the capsule. Our experiments showed that a capsule vaccine is protective in the mouse model and its efficacy could be enhanced by conjugation to a protein carrier. In initial experiments using high challenge doses, a capsule conjugate vaccine was not protective in rabbits but did show some protection in nonhuman primates. This suggests it may be useful as an addition to a protective antigen-based vaccine. We are also developing the use of the B. anthracis capsule-depolymerizing enzyme, CapD, as a therapeutic. We demonstrated that in vitro treatment of the encapsulated anthrax bacillus with CapD enzymatically removed the capsule from the bacterial surface making it susceptible to phagocytic killing. Initial experiments in vivo showed that CapD could be used successfully to treat experimental anthrax infections. Such a novel approach to target the capsule virulence factor might be of value in the treatment of infections due to antibiotic-resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery, O. T. & Dubos, R. (1931) The protective action of a specific enzyme against type III pneumococcus infection in mice. J Exp Med, 54, 73–89.

    Article  PubMed  CAS  Google Scholar 

  • Candela, T. & Fouet, A. (2005) Bacillus anthracis CapD, belonging to the γ-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol, 57, 717–26.

    Article  PubMed  CAS  Google Scholar 

  • Candela, T. & Fouet, A. (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol, 60, 1091–8.

    Article  PubMed  CAS  Google Scholar 

  • Cendrowski, S., Macarthur, W. & Hanna, P. (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol, 51, 407–17.

    Article  PubMed  CAS  Google Scholar 

  • Chabot, D., Joyce, J., Caulfield, M., Wang, S., Vietri, N., Leffel, E., Pitt, L., Cook, J., Hepler, R., Ruthel, G. & Friedlander, A. (2009) Efficacy of a poly-γ-D-glutamic acid capsule conjugate vaccine against inhalational anthrax in rabbits and non-human primates. Bacillus-ACT (2009): The international Bacillus anthracis, B. cereus, B. thuringiensis Conference. Santa Fe, NM. Abstract S5:4.

    Google Scholar 

  • Chabot, D. J., Scorpio, A., Tobery, S. A., Little, S. F., Norris, S. L. & Friedlander, A. M. (2004) Anthrax capsule vaccine protects against experimental infection. Vaccine, 23, 43–7.

    Article  PubMed  CAS  Google Scholar 

  • Gadebusch, H. H. (1960) Specific degradation of Cryptococcus neoformans 3723 capsular polysaccharide by a microbial enzyme. II. Biological activity of the enzyme. J Infect Dis, 107, 402–5.

    Article  PubMed  CAS  Google Scholar 

  • Gat, O., Mendelson, I., Chitlaru, T., Ariel, N., Altboum, Z., Levy, H., Weiss, S., Grosfeld, H., Cohen, S. & Shafferman, A. (2005) The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant. Mol Microbiol, 58, 533-51.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, J., Cook, J., Chabot, D., Hepler, R., Shoop, W., Xu, Q., Stambaugh, T., Aste-Amezaga, M., Wang, S., Indrawati, L., Bruner, M., Friedlander, A., Keller, P. & Caulfield, M. (2006) Immunogenicity and protective efficacy of Bacillus anthracis poly-gamma-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J Biol Chem, 281, 4831–43.

    Article  PubMed  CAS  Google Scholar 

  • Kozel, T. R., Murphy, W. J., Brandt, S., Blazar, B. R., Lovchik, J. A., Thorkildson, P., Percival, A., Lyons, C. R. (2004) mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc Nat Acad Sci USA, 101, 5042–7.

    Article  PubMed  CAS  Google Scholar 

  • Makino, S., Watarai, M., Cheun, H. I., Shirahata, T. & Uchida, I. (2002) Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax. J Infect Dis, 186, 227–33.

    Article  PubMed  CAS  Google Scholar 

  • McGillivray, S. M., Ebrahimi, C. M., Fisher, N., Sabet, M., Zhang, D. X., Chen, Y., Haste, N. M., Aroian, R. V., Gallo, R. L., Guiney, D. G., Friedlander, A. M., Koehler, T. M. & Nizet, V. (2009) ClpX Protease contributes to innate defense Peptide resistance and virulence phenotypes of Bacillus anthracis. J Innate Immun, 1, 494–506.

    Google Scholar 

  • McCloy, E. W. (1951) Studies on a lysogenic Bacillus strain. I. A bacteriophage specific for Bacillus anthracis. J Hyg 49, 114–25.

    CAS  Google Scholar 

  • Mesnage, S., Tosi-Couture, E., Gounon, P., Mock, M. & Fouet, A. (1998) The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis. J Bacteriol, 180, 52–8.

    PubMed  CAS  Google Scholar 

  • Mushtaq, N., Redpath, M. B., Luzio, J. P. & Taylor, P. W. (2005) Treatment of experimental Escherichia coli infection with recombinant bacteriophage derived capsule depolymerase. J Antimicrob Chemother, 24, 160–5.

    Article  Google Scholar 

  • Preisz, H. (1909) Experimentelle Studien Ã…ber Virulenz, Empfänglichkeit und Immunität beim Milzbrand. Zeitschr. Immunität Forsch, 5, 341–452.

    Google Scholar 

  • Richter, S., Anderson, V. J., Garufi, G., Lu, L., Budzik, J. M., Joachimiak, A., He, C., Schneewind, O. & Missiakas, D. (2009) Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol Microbiol, 71, 404–20.

    Article  PubMed  CAS  Google Scholar 

  • Scorpio, A., Chabot, D. J., Day, W. A., O’Brien, D. K., Vietri, N. J., Itoh, Y., Mohamadzadeh, M. & Friedlander, A. M. (2007) Poly-{gamma}-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother, 51, 15–22.

    Article  Google Scholar 

  • Scorpio, A., Tobery, S. A., Ribot, W. J. & Friedlander, A. M. (2008) Treatment of experimental anthrax with recombinant capsule depolymerase. Antimicrob Agents Chemother, 52, 1014–20.

    Article  PubMed  CAS  Google Scholar 

  • Shatalin, K., Gusarov, I., Avetissova, E., Shatalina, Y., McQuade, L. E., Lippard S. J. & Nudler, E. (2008) Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc Natl Acad Sci USA, 105, 1009–13.

    Article  PubMed  CAS  Google Scholar 

  • Tournier, J. -N., Paccani, S. R., Quesnel-Hellmann, A. & Baldari, C. T. (2009) Anthax toxins: a weapon to systematically dismantle the host immune defenses. Mol Aspects Med 2009, 30, 456–66.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, I., Makino, S., Sasakawa, C., Yoshikawa, M., Sugimoto, C. & Terakado, N. (1993) Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol, 9, 487–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the Defense Threat Reduction Agency for funding our research and Donald Chabot for help with several of the figures. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Friedlander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Friedlander, A.M. (2010). The Anthrax Capsule: Role in Pathogenesis and Target for Vaccines and Therapeutics. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_1

Download citation

Publish with us

Policies and ethics