Skip to main content

Pharmacological Chaperone Therapy for Fabry Disease

  • Chapter
  • First Online:
Fabry Disease
  • 1223 Accesses

Abstract

Pharmacological chaperone therapy is an emerging therapeutic treatment for genetic disorders resulting from the improper folding of proteins. A large set of disease-causing missense mutations in Fabry disease result in the synthesis of improperly folded α-galactosidase A that are retarded in the endoplasmic reticulum (ER) and degraded in the ER-associated degradation pathway, although these proteins may be enzymologically active, if they could be properly transported to the lysosomes. Pharmacological chaperones increase the residual enzyme activity in patients by acting as a folding template in the ER to facilitate proper folding of mutant proteins, hence accelerating their transport out from the ER and reach to lysosomes. 1-Deoxygalactonojirimycin (DGJ, migalastat, Amigal™) is a pharmacological chaperone for Fabry disease. This chapter describes the protein misfolding phenotype of Fabry disease, the mechanism of pharmacological chaperone therapy for Fabry disease, and the clinical development of DGJ for treating Fabry disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady RO (2006) Emerging strategies for the treatment of hereditary metabolic storage disorders. Rejuvenation Res 9(2):237–244

    Article  PubMed  CAS  Google Scholar 

  2. Fan JQ (2008) A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 389(1):1–11

    Article  PubMed  CAS  Google Scholar 

  3. Platt FM, Jeyakumar M, Andersson U et al (2003) Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos Trans R Soc Lond B Biol Sci 358(1433):947–954

    Article  PubMed  CAS  Google Scholar 

  4. Abe A, Gregory S, Lee L et al (2000) Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J Clin Invest 105(11):1563–1571

    Article  PubMed  CAS  Google Scholar 

  5. Cox TM, Platt FM, Aerts JMFG (2007) Medicinal use of iminosugars. In: Compain P, Martin OR (eds) Iminosugars: from synthesis to therapeutic application. John Wiley & Sons Ltd, West Sussex, pp 295–326

    Google Scholar 

  6. Fan JQ, Ishii S (2007) Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. Febs J 274(19):4962–4971

    Article  PubMed  CAS  Google Scholar 

  7. Conn PM, Janovick JA (2009) Drug development and the cellular quality control system. Trends Pharmacol Sci 30(5):228–233

    Article  PubMed  CAS  Google Scholar 

  8. Bernier V, Lagace M, Bichet DG et al (2004) Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15(5):222–228

    Article  PubMed  CAS  Google Scholar 

  9. Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426(6968):905–909

    Article  PubMed  CAS  Google Scholar 

  10. Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300

    Article  PubMed  CAS  Google Scholar 

  11. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    Article  PubMed  CAS  Google Scholar 

  12. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  13. Oda Y, Hosokawa N, Wada I et al (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299(5611):1394–1397

    Article  PubMed  CAS  Google Scholar 

  14. Fewell SW, Travers KJ, Weissman JS et al (2001) The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35:149–191

    Article  PubMed  CAS  Google Scholar 

  15. Schubert U, Anton LC, Gibbs J et al (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404(6779):770–774

    Article  PubMed  CAS  Google Scholar 

  16. Yewdell JW (2001) Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol 11(7):294–297

    Article  PubMed  CAS  Google Scholar 

  17. Kuznetsov G, Nigam SK (1998) Folding of secretory and membrane proteins. N Engl J Med 339:1688–1695

    Article  PubMed  CAS  Google Scholar 

  18. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286(5446):1882–1888

    Article  PubMed  CAS  Google Scholar 

  19. Pasyk EA, Foskett JK (1995) Mutant (DF508) cystic fibrosis transmembrane conductance regulator Cl- channel is functional when retained in endoplasmic reticulum of mammalian cells. J Biol Chem 270:12347–12350

    Article  PubMed  CAS  Google Scholar 

  20. Meacham GC, Patterson C, Zhang W et al (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105

    Article  PubMed  CAS  Google Scholar 

  21. Brady OR, Gal AE, Bradley RM et al (1967) Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med 276:1163–1167

    Article  PubMed  CAS  Google Scholar 

  22. Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337(2):319–335

    Article  PubMed  CAS  Google Scholar 

  23. Garman SC, Garboczi DN (2002) Structural basis of Fabry disease. Mol Genet Metab 77(1–2):3–11

    Article  PubMed  CAS  Google Scholar 

  24. Ishii S, Kase R, Sakuraba H et al (1993) Characterization of a mutant α-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Comm 197:1585–1589

    Article  PubMed  CAS  Google Scholar 

  25. Ishii S, Suzuki Y, Fan J-Q (2000) Role of Ser-65 in the activity of alpha-galactosidase A: characterization of a point mutation (S65T) detected in a patient with Fabry disease. Arch Biochem Biophys 377(2):228–233

    Article  PubMed  CAS  Google Scholar 

  26. Ishii S, Chang HH, Kawasaki K et al (2007) Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406(2):285–295

    Article  PubMed  CAS  Google Scholar 

  27. Yasuda K, Chang HH, Wu HL et al (2004) Efficient and rapid purification of recombinant human alpha-galactosidase A by affinity column chromatography. Protein Expr Purif 37(2):499–506

    Article  PubMed  CAS  Google Scholar 

  28. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  PubMed  CAS  Google Scholar 

  29. Fan J-Q (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24(7):355–360

    Article  PubMed  CAS  Google Scholar 

  30. Fan J-Q, Ishii S, Asano N et al (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 59(1):112–115

    Article  Google Scholar 

  31. Asano N, Ishii S, Kizu H et al (2000) In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem 267:4179–4186

    Article  PubMed  CAS  Google Scholar 

  32. Hamanaka R, Shinohara T, Yano S et al (2008) Rescue of mutant alpha-galactosidase A in the endoplasmic reticulum by 1-deoxygalactonojirimycin leads to trafficking to lysosomes. Biochim Biophys Acta 1782(6):408–413

    Article  PubMed  CAS  Google Scholar 

  33. Shin SH, Murray GJ, Kluepfel-Stahl S et al (2007) Screening for pharmacological chaperones in Fabry disease. Biochem Biophys Res Commun 359(1):168–173

    Article  PubMed  CAS  Google Scholar 

  34. Shin SH, Kluepfel-Stahl S, Cooney AM et al (2008) Prediction of response of mutated alpha-galactosidase A to a pharmacological chaperone. Pharmacogenet Genomics 18(9):773–780

    Article  PubMed  CAS  Google Scholar 

  35. Benjamin ER, Flanagan JJ, Schilling A et al (2009) The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 32(3):424–440

    Article  PubMed  CAS  Google Scholar 

  36. Ishii S, Kase R, Sakuraba H et al (1998) α-Galactosidase transgenic mouse: heterogeneous gene expression and posttranslational glycosylation in tissues. Glycoconj J 15:591–594

    Article  PubMed  CAS  Google Scholar 

  37. Ohshima T, Murray GJ, Swaim WD et al (1997) α-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94:2540–2544

    Article  PubMed  CAS  Google Scholar 

  38. Ishii S, Chang HH, Yoshioka H et al (2009) Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther 328(3):723–731

    Article  PubMed  CAS  Google Scholar 

  39. Frustaci A, Chimenti C, Ricci R et al (2001) Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy. N Engl J Med 345(1):25–32

    Article  PubMed  CAS  Google Scholar 

  40. Porto C, Cardone M, Fontana F et al (2009) The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 17(6):964–971

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Fan, JQ., Ishii, S. (2010). Pharmacological Chaperone Therapy for Fabry Disease. In: Elstein, D., Altarescu, G., Beck, M. (eds) Fabry Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9033-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9033-1_29

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9032-4

  • Online ISBN: 978-90-481-9033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics