Skip to main content

Transport Phenomena in Two-Phase Thermal Spreaders

  • Conference paper
  • First Online:
Microfluidics Based Microsystems

Abstract

According to the second law of thermodynamics, the entire world is moving towards maximum entropy: “heat cannot of itself pass from a colder to a hotter body”. By definition, “heat transfer is a basic science that deals with the rate of transfer of thermal energy” [1]. There are three basic mechanisms of heat transfer: conduction, convection, and radiation. Conduction is based on energy transfer between two adjacent particles of a substrate with different energy levels, whereas in convection, the heat transfers between a solid and an adjacent moving fluid. The mechanism of heat transfer through the emission of electromagnetic waves (or photons) from a matter is called radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cengel, Y.A., Heat Transfer: a practical approach. (Second ed., New York: McGraw-Hill, 2003).

    Google Scholar 

  2. Webb, R.L. and N.-H. Kim, Principles of enhanced heat transfer (Second ed., New York: Taylor & Francis, 2005).

    Google Scholar 

  3. Park, K.A., and Bergles, A.E., Boiling Heat Transfer Characteristics of Simulated Microelectronic Chips with Detachable Heat Sinks, Eighth International Heat Transfer Conference, Vol. 4, Hemisphere Publishing Corporation, Washington, DC, pp. 2099–2104, 1986.

    Google Scholar 

  4. Bergles, A.E. and Bar-Cohen, A., Direct Liquid Cooling of Microelectronic Components, Advances in Thermal Modeling of Electronic Components and Systems, Eds., Bar-Cohen, A. and Kraus, A.D., Vol. 2, pp. 233–250, ASME Press, New York, 1990.

    Google Scholar 

  5. Incropera, F.P., Liquid Immersion Cooling of Electronic Components, Heat Transfer in Electronic and Microelectronic Equipment, Ed. A. E. Bergles, pp. 407–444, Hemisphere Publishing Corporation, 1990.

    Google Scholar 

  6. Bar-Cohen, A., Thermal Management of Electronic Components with Dielectric Liquids, International Journal of JSME 36(1), 1–25 (1993).

    Article  Google Scholar 

  7. Tien, C.-L., A. Majumdar, and F.M. Gerner, Microscale energy transport. Series in chemical and mechanical engineering (Washington, DC: Taylor & Francis, 1998).

    Google Scholar 

  8. Tuckerman, D.B. and R.F.W. Pease, High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981. ED-2(5): p. 126.

    Article  ADS  Google Scholar 

  9. Zohar, Y., Heat convection in micro ducts. Microsystems, ed. S. Senturia (Norwell, MA: Kluwer Academic Publishers. 2003).

    Google Scholar 

  10. Kandlikar, S.G., et al., Heat transfer and fluid flow in minichannels and microchannels., (Oxford: Elsevier, 2006).

    Google Scholar 

  11. Zhang, L., T.W. Kenny, and K.E. Goodson, Silicon microchannel heat sinks. Microtechnology and MEMS, ed. H. Baltes, H. Fujita, and D. Liepmann, (New York: Springer-Verlag, Berlin-Heidelberg, 2004).

    Chapter  Google Scholar 

  12. Sobhan, C.B. and S.V. Garimella, A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophysical Engineering, 5(4), 293–311 (2001).

    Article  Google Scholar 

  13. Leslie, S.G., Cooling options and challenges of high power semiconductors modules, Electronics Cooling, 12(4), 20–27 (2006).

    Google Scholar 

  14. Copeland, D., Fundamental Performance of Heatsinks, ASME Journal of Electronic Packaging, 125(2), 221–225 (2003).

    Article  Google Scholar 

  15. Copeland, D., Review of Low Profile Cold Plate Technology for High Density Servers, Electronics Cooling, 11(2), (2005).

    Google Scholar 

  16. Clemens J.M. Lasance and R.E. Simons, Advances In High - Performance Cooling For Electronics, Electronic Cooling, http://electronics-cooling.com/articles/2005/2005_nov_article2.php

  17. North, M.T., Shaubach R.M., Rosenfeld, J.H., Liquid Film Evaporation From Bidisperse Capillary Wicks in Heat Pipe Evaporators, Proceedings of 9 th IHPC, May 1995, Albuquerque NM.

    Google Scholar 

  18. Rosenfeld, J.H., Anderson, W.G., North, M.T., Improved High Heat Flux Loop Heat Pipes using bidisperse evaporators wicks, Proceedings of 10 th IHPC, September 1997, Stuttgart.

    Google Scholar 

  19. H.F. Smirnov and K.A. Goncharov, Physical and Mathematical modelling of loop heat pipes evaporators, Proceedings of 11 th IHPC, September 1999, Tokyo.

    Google Scholar 

  20. Altman, E.I., Mukminova, M.Ja., Smirnov, H.F., Loop Heat Pipe Evaporators’ Theoretical Analysis, Proceedings of 12 th IHPC, May 2002, Moscow.

    Google Scholar 

  21. Maidanik, Yu.F., Fershtater, Yu.G., Pastukhov, V.G., Loop Heat Pipes: Working out, Investigations, Engineering calculations’ elements, The Scientific reports of USSR Academy of Sciences, Ural Branch, 1989, Sverdlovsk.

    Google Scholar 

  22. D.A. Labuntzov and A.P. Krukov, Intensive evaporation processes, Teplo?energetika, 4, 8–11 (1977).

    Google Scholar 

  23. D.A. Labuntzov and A.P. Krukov, Analysis of intensive evaporation and condensation, International Journal of HMT, 22, 989–1002 (1979).

    Google Scholar 

  24. Krukov, A.P., Kinetic analysis of evaporation and condensing processes on the surface, International Seminar of Belarus Academy of Science, 1991, Minsk.

    Google Scholar 

  25. Maidanik, Yu.F., Vershinin, S.V., Fershtater, Yu.G., Heat transfer enhancement in a loop heat pipe evaporator, Proceedings of 10 th IHPC, September 1997, Stuttgart.

    Google Scholar 

  26. Smirnov, H.F., Transport Phenomena in Capillary-Porous Structures and Heat Pipes (CRC Press, 2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kosoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Smirnov, H., Kosoy, B. (2010). Transport Phenomena in Two-Phase Thermal Spreaders. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_7

Download citation

Publish with us

Policies and ethics