Skip to main content

Magnetic Particle Handling in Microfluidic Systems

  • Conference paper
  • First Online:
Microfluidics Based Microsystems

Abstract

We present techniques and methodologies for the manipulation of magnetic micro- and nanoparticles (‘beads’) in microfluidic systems. We first introduce the most important forces that act on magnetic particles in a microfluidic system. Starting with the magnetic force that is responsible for the primary actuation of the magnetic particles, we discuss the viscous drag force induced when the particles are moving with a speed different from the liquid in the microfluidic channel. These forces can be combined in time and space to realize the basic manipulation steps of magnetic beads in a microfluidic system: retention, separation, mixing and transport. We also discuss the use of beads as magnetic detection labels or as magnetic force mediators inside droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Manz, N. Graber, and H.M. Widmer: Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators B-Chemical 1, 244–248 (1990).

    Article  Google Scholar 

  2. M.A.M. Gijs: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics 1, 22–40 (2004).

    Google Scholar 

  3. N. Pamme: Magnetism and microfluidics. Lab on a Chip 6, 24–38 (2006).

    Article  Google Scholar 

  4. A.H. Lu, E.L. Salabas, and F. Schüth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 46, 1222–1244 (2007).

    Article  Google Scholar 

  5. D. Horák, M. Babic, H. Mackova, and M.J. Benes: Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science 30, 1751–1772 (2007).

    Article  Google Scholar 

  6. S.S. Papell: US patent 3215572 (1965).

    Google Scholar 

  7. R.M. Cornell and U. Schertmann: The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. (1996), Weinheim: VCH.

    Google Scholar 

  8. Petri-Fink, M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann: Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26, 2685–2694 (2005).

    Article  Google Scholar 

  9. R. Lawaczeck, H. Bauer, T. Frenzel, M. Hasegawa, Y. Ito, K. Kito, N. Miwa, H. Tsutsui, H. Volger, and H.J. Weinmann: Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting - Pre-clinical profile of SH U555A. Acta Radiologica 38, 584–597 (1997).

    Google Scholar 

  10. D.K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials 225, 256–261 (2001).

    Article  ADS  Google Scholar 

  11. S. Chikazumi: Physics of Magnetism. (1964), Malabar, Florida, USA: Robert E. Krieger Publishing Company.

    Google Scholar 

  12. Y. Moser, T. Lehnert, and M.A.M. Gijs: Quadrupolar magnetic actuation of superparamagnetic particles for enhanced microfluidic perfusion. Applied Physics Letters 022505 (2009).

    Google Scholar 

  13. F.M. White: Fluid Mechanics. (1999): McGraw-Hill.

    Google Scholar 

  14. J.W. Choi, T.M. Liakopoulos, and C.H. Ahn: An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosensors & Bioelectronics 16, 409–416 (2001).

    Article  Google Scholar 

  15. T. Deng, M. Prentiss, and G.M. Whitesides: Fabrication of magnetic microfiltration systems using soft lithography. Applied Physics Letters 80, 461–463 (2002).

    Article  ADS  Google Scholar 

  16. Rida, V. Fernandez, and M.A.M. Gijs: Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Applied Physics Letters 83, 2396–2398 (2003).

    Article  ADS  Google Scholar 

  17. C.S. Lee, H. Lee, and R.M. Westervelt: Microelectromagnets for the control of magnetic nanoparticles. Applied Physics Letters 79, 3308–3310 (2001).

    Article  ADS  Google Scholar 

  18. H. Lee, Y. Liu, R.M. Westervelt, and D. Ham: IC/Microfluidic hybrid system for magnetic manipulation of biological cells. Ieee Journal of Solid-State Circuits 41, 1471–1480 (2006).

    Article  Google Scholar 

  19. D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, and R.J. Colton: A biosensor based on magnetoresistance technology. Biosensors & Bioelectronics 13, 731–739 (1998).

    Article  Google Scholar 

  20. F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Analytical Chemistry 80, 2905–2910 (2008).

    Article  Google Scholar 

  21. A. Rida and M.A.M. Gijs: Dynamics of magnetically retained supraparticle structures in a liquid flow. Applied Physics Letters 85, 4986–4988 (2004).

    Article  ADS  Google Scholar 

  22. Microfluidic mixer using magnetic beads. in: 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, October 59, 2003, Squaw Valley, California USA., 579–582 (2003).

    Google Scholar 

  23. M.A.M. Gijs, F. Lacharme, and U. Lehmann: Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical Reviews (2010).

    Google Scholar 

  24. J.J. Chalmers, M. Zborowski, L.P. Sun, and L. Moore: Flow through, immunomagnetic cell separation. Biotechnology Progress 14, 141–148 (1998).

    Google Scholar 

  25. G.P. Hatch and R.E. Stelter: Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. Journal of Magnetism and Magnetic Materials 225, 262–276 (2001).

    Article  ADS  Google Scholar 

  26. F. Carpino, L.R. Moore, M. Zborowski, J.J. Chalmers, and P.S. Williams: Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation. Journal of Magnetism and Magnetic Materials 293, 546–552 (2005).

    Article  ADS  Google Scholar 

  27. M. Hoyos, L.R. Moore, K.E. McCloskey, S. Margel, M. Zuberi, J.J. Chalmers, and M. Zborowski: Study of magnetic particles pulse-injected into an annular SPLITT-like channel inside a quadrupole magnetic field. Journal of Chromatography A 903, 99–116 (2000).

    Article  Google Scholar 

  28. N. Pamme and A. Manz: On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates. Analytical Chemistry 76, 7250–7256 (2004).

    Article  Google Scholar 

  29. M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas: Giant Magnetoresistance of (001)Fe/ (001) Cr Magnetic Superlattices. Physical Review Letters 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  30. B. Dieny, V.S. Speriosu, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart, and D.R. Wilhoit: Magnetotransport Properties of Magnetically Soft Spin-Valve Structures. Journal of Applied Physics 69, 4774–4779 (1991).

    Article  ADS  Google Scholar 

  31. P.P. Freitas, F. Silva, N.J. Oliveira, L.V. Melo, L. Costa, and N. Almeida: Spin valve sensors. Sensors and Actuators a-Physical 81, 2–8 (2000).

    Article  Google Scholar 

  32. R.L. Edelstein, C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt, L.J. Whitman, and R.J. Colton: The BARC biosensor applied to the detection of biological warfare agents. Biosensors & Bioelectronics 14, 805–813 (2000).

    Article  Google Scholar 

  33. M.M. Miller, P.E. Sheehan, R.L. Edelstein, C.R. Tamanaha, L. Zhong, S. Bounnak, L.J. Whitman, and R.J. Colton: A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. Journal of Magnetism and Magnetic Materials 225, 138–144 (2001).

    Article  ADS  Google Scholar 

  34. J.C. Rife, M.M. Miller, P.E. Sheehan, C.R. Tamanaha, M. Tondra, and L.J. Whitman: Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators a-Physical 107, 209–218 (2003).

    Article  Google Scholar 

  35. A. Rida and M.A.M. Gijs: Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Analytical Chemistry 76, 6239–6246 (2004).

    Article  Google Scholar 

  36. R. Mukhopadhyay: Diving into droplets. Analytical Chemistry 78, 1401–1404 (2006).

    Article  Google Scholar 

  37. K. Jensen and A. Lee: The science & applications of droplets in microfluidic devices - Foreword. Lab on a Chip 4, 31N-32N (2004).

    Article  Google Scholar 

  38. A.A. Garcia, A. Egatz-Gomez, S.A. Lindsay, P. Dominguez-Garcia, S. Melle, M. Marquez, M.A. Rubio, S.T. Picraux, D.Q. Yang, P. Aella, M.A. Hayes, D. Gust, S. Loyprasert, T. Vazquez-Alvarez, and J. Wang: Magnetic movement of biological fluid droplets. Journal of Magnetism and Magnetic Materials 311, 238–243 (2007).

    Article  ADS  Google Scholar 

  39. R. Mukhopadhyay: Magnetic dust mobilizes droplets. Analytical Chemistry 77, 55A-55A (2005).

    Google Scholar 

  40. Egatz-Gomez, S. Melle, A.A. Garcia, S.A. Lindsay, M. Marquez, P. Dominguez-Garcia, M.A. Rubio, S.T. Picraux, J.L. Taraci, T. Clement, D. Yang, M.A. Hayes, and D. Gust: Discrete magnetic microfluidics. Applied Physics Letters 89, (2006).

    Google Scholar 

  41. M. Shikida, M. Koyama, N. Nagao, R. Imai, H. Honda, M. Okochi, H. Tsuchiya, and K. Sato: Agitation of magnetic beads by multi-layered flat coils. Sensors and Actuators B-Chemical 137, 774–780 (2009).

    Google Scholar 

  42. Y. Wang, Y. Zhao, and S.K. Cho: Efficient in-droplet separation of magnetic particles for digital microfluidics. Journal of Micromechanics and Microengineering 17, 2148–2156 (2007).

    Article  ADS  Google Scholar 

  43. G.J. Shah and C.J. Kim: Meniscus-Assisted High-Efficiency Magnetic Collection and Separation for EWOD Droplet Microfluidics. Journal of Microelectromechanical Systems 18, 363–375 (2009).

    Article  Google Scholar 

  44. T. Ohashi, H. Kuyama, K. Suzuki, and S. Nakamura: Control of aqueous droplets using magnetic and electrostatic forces. Analytica Chimica Acta 612, 218–225 (2008).

    Article  Google Scholar 

  45. U. Lehmann, S. Hadjidj, V.K. Parashar, C. Vandevyver, A. Rida, and M.A.M. Gijs: Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sensors and Actuators B-Chemical 117, 457–463 (2006).

    Article  Google Scholar 

  46. A. Beyzavi and N.T. Nguyen: One-dimensional actuation of a ferrofluid droplet by planar microcoils. Journal of Physics D-Applied Physics 42, (2009)

    Google Scholar 

  47. N.T. Nguyen, A. Beyzavi, K.M. Ng, and X.Y. Huang: Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics 3, 571–579 (2007).

    Article  Google Scholar 

  48. M. Shikida, K. Inouchi, H. Honda, and K. Sato: Magnetic handling of droplet in micro chemical analysis system utilizing surface tension and wettability. in: 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2004), 359–362 (2004) Maastricht, The Netherlands.

    Google Scholar 

  49. U. Lehmann, V. Parashar, S. Hadjidj, A. Rida, and M.A.M. Gijs: Two dimensional magnetic manipulation of microdroplets on a chip. in: Digest of Technical Papers of Transducers 2005, 77–80 (2005) Seoul, Korea.

    Google Scholar 

  50. U. Lehmann, C. Vandevyver, V.K. Parashar, and M.A.M. Gijs: Droplet-based DNA purification in a magnetic lab-on-a-chip. Angewandte Chemie-International Edition 45, 3062–3067 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. M. Gijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gijs, M.A.M. (2010). Magnetic Particle Handling in Microfluidic Systems. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_22

Download citation

Publish with us

Policies and ethics