Skip to main content

Transport of Droplets in Microfluidic Systems

  • Conference paper
  • First Online:
  • 3577 Accesses

Abstract

Microfluidics provides for a convenient playground for experiments on dynamic systems. Two phase microfluidic systems present a new class of behaviors that are both complex and stable. The dynamics of flow of droplets through micro-networks are one of such examples: they are complicated because there are long-range interactions between the droplets that modify the pressure distribution in the channels, at the same time the resulting complicated dynamics are robust against experimental disturbances. Flow of droplets through microfluidic networks provide a route to nontrivial and reversible operations on streams of bubbles, logic operations on droplets. This lecture will introduce the rudimentary physics of Stokes flow in a simple pipe, the recent experiments and simulations on the flow of droplets and bubbles through microfluidic networks, and the vision of complex and automated microfluidic chips that perform combinatorial operations on miniaturized chemical reaction beakers – droplets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Thorsen, R.W. Roberts, F.H. Arnold, and S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Physical Review Letters, 86, 4163–4166, (2001).

    Article  ADS  Google Scholar 

  2. J.D. Tice, H. Song, A.D. Lyon, and R.F. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, 19, 9127–9133, (2003).

    Article  Google Scholar 

  3. P. Garstecki, M.J. Fuerstman, H.A. Stone, and G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up, Lab on a Chip, 6, 437–446, (2006).

    Article  Google Scholar 

  4. G.F. Christopher, N.N. Noharuddin, J.A. Taylor, and S.L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Physical Review E, 78, (2008).

    Google Scholar 

  5. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, and H.A. Stone, Formation of monodisperse bubbles in a microfluidic flow-focusing device, Applied Physics Letters, 85, 2649–2651, (2004).

    Google Scholar 

  6. P. Garstecki, H.A. Stone, and G.M. Whitesides, Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions, Physical Review Letters, 94, (2005).

    Google Scholar 

  7. B. Dollet, W. van Hoeve, J.P. Raven, P. Marmottant, and M. Versluis, Role of the channel geometry on the bubble pinch-off in flow-focusing devices, Physical Review Letters, 100, (2008).

    Google Scholar 

  8. W. Lee, L.M. Walker, and S.L. Anna, Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing, Physics of Fluids, 21, (2009).

    Google Scholar 

  9. D.R. Link, S.L. Anna, D.A. Weitz, and H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Physical Review Letters, 92, (2004).

    Google Scholar 

  10. M. Seo, C. Paquet, Z.H. Nie, S.Q. Xu, and E. Kumacheva, Microfluidic consecutive flow-focusing droplet generators, Soft Matter, 3, 986–992, (2007).

    Google Scholar 

  11. T. Nisisako, T. Torii, T. Takahashi, and Y. Takizawa, Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system, Advanced Materials, 18, 1152–+, (2006).

    Article  Google Scholar 

  12. S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir, 20, 9905–9908, (2004).

    Google Scholar 

  13. R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.Y. Chu, J.W. Kim, A. Fernandez-Nieves, C.J. Martinez, and D.A. Weitz, Designer emulsions using microfluidics, Materials Today, 11, 18–27, (2008).

    Google Scholar 

  14. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, and D.A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537–541, (2005).

    Article  ADS  Google Scholar 

  15. S.Q. Xu, Z.H. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, and G.M. Whitesides, Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition, Angewandte Chemie-International Edition, 44, 724–728, (2005).

    Article  Google Scholar 

  16. D. Dendukuri, S.S. Gu, D.C. Pregibon, T.A. Hatton, and P.S. Doyle, Stop-flow lithography in a microfluidic device, Lab on a Chip, 7, 818–828, (2007).

    Article  Google Scholar 

  17. D.K. Hwang, D. Dendukuri, and P.S. Doyle, Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles, Lab on a Chip, 8, 1640–1647, (2008).

    Article  Google Scholar 

  18. M.T. Sullivan and H.A. Stone, The role of feedback in microfluidic flow-focusing devices, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366, 2131–2143, (2008).

    Article  ADS  Google Scholar 

  19. M. De Menech, P. Garstecki, F. Jousse, and H.A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, Journal of Fluid Mechanics, 595, 141–161, (2008).

    ADS  MATH  Google Scholar 

  20. A.M. Ganan-Calvo, Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Physical Review Letters, 80, 285–288, (1998).

    Article  ADS  Google Scholar 

  21. Z.H. Nie, M.S. Seo, S.Q. Xu, P.C. Lewis, M. Mok, E. Kumacheva, G.M. Whitesides, P. Garstecki, and H.A. Stone, Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids, Microfluidics and Nanofluidics, 5, 585–594, (2008).

    Article  Google Scholar 

  22. J.D. Tice, R.F. Ismagilov, and B. Zheng, Forming droplets in microfluidic channels with alternating composition and application to indexing concentrations in droplet-based assays, Abstracts of Papers of the American Chemical Society, 228, 106-CHED, (2004).

    Google Scholar 

  23. B. Zheng, L.S. Roach, and R.F. Ismagilov, Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, Journal of the American Chemical Society, 125, 11170–11171, (2003).

    Article  Google Scholar 

  24. H. Song, D.L. Chen, and R.F. Ismagilov, Reactions in droplets in microflulidic channels, Angewandte Chemie-International Edition, 45, 7336–7356, (2006).

    Article  Google Scholar 

  25. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, and R.F. Ismagilov, Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Applied Physics Letters, 83, 4664–4666, (2003).

    Article  ADS  Google Scholar 

  26. H. Song and R.F. Ismagilov, Millisecond kinetics on a microfluidic chip using nanoliters of reagents, Journal of the American Chemical Society, 125, 14613–14619, (2003).

    Article  Google Scholar 

  27. F. Jousse, R. Farr, D.R. Link, M.J. Fuerstman, and P. Garstecki, Bifurcation of droplet flows within capillaries, Physical Review E, 74, (2006).

    Google Scholar 

  28. M.J. Fuerstman, P. Garstecki, and G.M. Whitesides, Coding/decoding and reversibility of droplet trains in microfluidic networks, Science, 315, 828–832, (2007).

    Article  ADS  Google Scholar 

  29. M. Prakash and N. Gershenfeld, Microfluidic bubble logic, Science, 315, 832–835, (2007).

    Article  ADS  Google Scholar 

  30. P. Garstecki, M.J. Fuerstman, and G.M. Whitesides, Oscillations with uniquely long periods in a microfluidic bubble generator, Nature Physics, 1, 168–171, (2005).

    Article  ADS  Google Scholar 

  31. N.A. Mortensen, F. Okkels, and H. Bruus, Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, Physical Review E, 71, (2005).

    Google Scholar 

  32. G.I. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of Fluid Mechanics, 10, 161–165, (1961).

    Article  ADS  MATH  Google Scholar 

  33. F.P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, 10, 166–188, (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S.R. Hodges, O.E. Jensen, and J.M. Rallison, The motion of a viscous drop through a cylindrical tube, Journal of Fluid Mechanics, 501, 279–301, (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D.A. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin, and P. Panizza, Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements, Physical Review E, 80, (2009).

    Google Scholar 

  36. M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, and G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles, Lab on a Chip, 7, 1479–1489, (2007).

    Article  Google Scholar 

  37. V. Labrot, M. Schindler, P. Guillot, A. Colin, and M. Joanicot, Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks, Biomicrofluidics, 3, (2009).

    Google Scholar 

  38. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry, 70, 4974–4984, (1998).

    Article  Google Scholar 

  39. M. Schindler and A. Ajdari, Droplet traffic in microfluidic networks: A simple model for understanding and designing, Physical Review Letters, 100, (2008).

    Google Scholar 

  40. O. Cybulski, SPICE’d Microfluidics, presentation at Coding and Computation in Microfluidics meeting at MIT, http://cba.mit.edu/events/07.05.fluid/. (2007).

    Google Scholar 

  41. O. Cybulski and P. Garstecki, Dynamic Memory in a Microfluidic System of Droplets Traveling Through a Simple Network of Microchannels, Lab on a Chip, (in press), (2009).

    Google Scholar 

  42. T.B. Jones, M. Gunji, M. Washizu, and M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation, Journal of Applied Physics, 89, 1441–1448, (2001).

    Article  ADS  Google Scholar 

  43. J. Zeng and T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip, 4, 265–277, (2004).

    Article  Google Scholar 

  44. M.Y. He, J.S. Kuo, and D.T. Chiu, Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems, Applied Physics Letters, 87, (2005).

    Google Scholar 

  45. F. Malloggi, H. Gu, A.G. Banpurkar, S.A. Vanapalli, and F. Mugele, Electrowetting - A versatile tool for controlling microdrop generation, European Physical Journal E, 26, 91–96, (2008).

    Article  ADS  Google Scholar 

  46. V. Srinivasan, V.K. Pamula, and R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 4, 310–315, (2004).

    Article  Google Scholar 

  47. R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 3, 245–281, (2007).

    Article  Google Scholar 

  48. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez, and D.A. Weitz, Electric control of droplets in microfluidic devices, Angewandte Chemie-International Edition, 45, 2556 2560, (2006).

    Google Scholar 

  49. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez, and D.A. Weitz, Electric control of droplets in microfluidic devices, Angewandte Chemie-International Edition, 45, 2556–2560, (2006).

    Google Scholar 

  50. M.L. Cordero, D.R. Burnham, C.N. Baroud, and D. McGloin, Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball, Applied Physics Letters, 93, (2008).

    Google Scholar 

  51. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, 288, 113–116, (2000).

    Google Scholar 

  52. W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, and R.A. Mathies, Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices, Sensors and Actuators B-Chemical, 89, 315–323, (2003).

    Article  Google Scholar 

  53. J. Xu and D. Attinger, Drop on demand in a microfluidic chip, Journal of Micromechanics and Microengineering, 18, (2008).

    Google Scholar 

  54. A. Bransky, N. Korin, M. Khoury, and S. Levenberg, A microfluidic droplet generator based on a piezoelectric actuator, Lab on a Chip, 9, 516–520, (2009).

    Google Scholar 

  55. B.C. Lin and Y.C. Su, On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves, Journal of Micromechanics and Microengineering, 18, (2008).

    Google Scholar 

  56. W. Wang, C. Yang, and C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays, Lab on a Chip, 9, 1504–1506, (2009).

    Article  Google Scholar 

  57. J.N. Lee, C. Park, and G.M. Whitesides, Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices, Analytical Chemistry, 75, 6544–6554, (2003).

    Article  Google Scholar 

  58. K. Churski, J. Michalski, and P. Garstecki, Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device., Lab on a Chip, (in press), (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Garstecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Garstecki, P. (2010). Transport of Droplets in Microfluidic Systems. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_10

Download citation

Publish with us

Policies and ethics