Skip to main content

Gene Content of the Mammalian X Chromosome

  • Chapter
  • First Online:
Marsupial Genetics and Genomics
  • 1116 Accesses

Abstract

The human and mouse X chromosomes have an atypical gene content. These X chromosomes contain more genes involved in reproduction and brain function than would be expected by chance alone. The accumulation of these types of genes may be facilitated by the structure of the X chromosome, which may be conducive to the amplification of genes in particular regions. In addition, as the X chromosome is hemizygous in males and is silenced during male meiosis, this affects both the fixation of male-beneficial and female-beneficial genes, and the expression of X-linked genes during meiosis. A requirement for the expression of X-linked genes during spermatogenesis may have driven retrotransposition of genes both on and off the X, and this has had a role in shaping the gene content of the mammalian X chromosome. Characterisation of the structure and gene content of the marsupial X chromosome is essential to understand whether the features of structure and expression observed on the human and mouse X chromosomes are fundamental to all therian X chromosomes. This will indicate whether the therian X chromosome plays a special role in reproduction and brain functions, and possibly speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertrand M, Huijbers I, Chomez P, De Backer O (2004) Comparative expression analysis of the MAGED genes during embryogenesis and brain development. Dev Dyn 230:325–334.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, et al. (2007) The delayed rise of present-day mammals. Nature 446:507–512.

    Article  PubMed  CAS  Google Scholar 

  • Chiurazzi P, Schwartz CE, Gecz J, Neri G (2008) XLMR genes: update 2007. Eur J Hum Genet 16:422–434.

    Article  PubMed  CAS  Google Scholar 

  • Chomez P, De Backer O, Bertrand M, et al. (2001) An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61:5544–5551.

    PubMed  CAS  Google Scholar 

  • Dahl HH, Brown RM, Hutchison WM, Maragos C, Brown GK (1990) A testis-specific form of the human pyruvate dehydrogenase E1 alpha subunit is coded for by an intronless gene on chromosome 4. Genomics 8:225–232.

    Article  PubMed  CAS  Google Scholar 

  • Deakin JE, Koina E, Waters PD, et al. (2008) Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosome Res 16:1159–1175.

    Article  PubMed  CAS  Google Scholar 

  • Delbridge ML, Graves JAM (2007) Origin and evolution of spermatogenesis genes on the human sex chromosomes. Soc Reprod Fertil Suppl 65:1–17.

    PubMed  CAS  Google Scholar 

  • Delbridge ML, Lingenfelter PA, Disteche CM, Graves JAM (1999) The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nat Genet 22:223–224.

    Article  PubMed  CAS  Google Scholar 

  • Delbridge ML, Longepied G, Depetris D, et al. (2004) TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X – implications for Y chromosome evolution. Chromosome Res 12:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Delbridge ML, McMillan DA, Doherty RJ, Deakin JE, Graves JAM (2008) Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX). BMC Genomics 9:65.

    Article  PubMed  Google Scholar 

  • Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303:537–540.

    Article  PubMed  CAS  Google Scholar 

  • Foster JW, Graves JAM (1994) An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA 91:1927–1931.

    Article  PubMed  CAS  Google Scholar 

  • Franco MJ, Sciurano RB, Solari AJ (2007) Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res 15:815–824.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes–an evolving understanding. Bioessays 17:311–320.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124: 901–914.

    Article  PubMed  Google Scholar 

  • Graves JAM, Gecz J, Hameister H (2002) Evolution of the human X–a smart and sexy chromosome that controls speciation and development. Cytogenet Genome Res 99:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Grützner F, Rens W, Tsend-Ayush E, et al. (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432:913–917.

    Article  PubMed  Google Scholar 

  • Gurbich TA, Bachtrog D (2008) Gene content evolution on the X chromosome. Curr Opin Genet Dev 18:493–498.

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–1867.

    Article  PubMed  CAS  Google Scholar 

  • Hore TA, Koina E, Wakefield MJ, Graves JAM (2007) The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15:147–161.

    Article  PubMed  CAS  Google Scholar 

  • Hornecker JL, Samollow PB, Robinson ES, Vandeberg JL, McCarrey JR (2007) Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica. Genesis 45:696–708.

    Article  PubMed  CAS  Google Scholar 

  • Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862.

    Article  PubMed  CAS  Google Scholar 

  • Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD (2004) The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 36:642–646.

    Article  PubMed  CAS  Google Scholar 

  • Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JAM, Hameister H (2004) Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 20:598–603.

    Article  PubMed  CAS  Google Scholar 

  • Kohn M, Kehrer-Sawatzki H, Steinbach P, Graves JAM, Hameister H (2007) Recruitment of old genes to new functions: evidences obtained by comparing the orthologues of human XLMR genes in mouse and chicken. Cytogenet Genome Res 116:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Koslowski M, Sahin U, Huber C, Tureci O (2006) The human X chromosome is enriched for germline genes expressed in premeiotic germ cells of both sexes. Hum Mol Genet 15: 2392–2399.

    Article  PubMed  CAS  Google Scholar 

  • Kouprina N, Mullokandov M, Rogozin IB, et al. (2004) The SPANX gene family of cancer/testis-specific antigens: rapid evolution and amplification in African great apes and hominids. Proc Natl Acad Sci USA 101:3077–3082.

    Article  PubMed  CAS  Google Scholar 

  • Kouprina N, Pavlicek A, Noskov VN, et al. (2005) Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res 15:1477–1486.

    Article  PubMed  CAS  Google Scholar 

  • Lingenfelter PA, Delbridge ML, Thomas S, et al. (2001) Expression and conservation of processed copies of the RBMX gene. Mamm Genome 12:538–545.

    Article  PubMed  CAS  Google Scholar 

  • Loriot A, Boon T, De Smet C (2003) Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int J Cancer 105:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Lubs HA, Chiurazzi P, Arena JF, et al. (1996) XLMR genes: update 1996. Am J Med Genet 64:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, et al. (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Royo H, Vandeberg JL, et al. (2009) Key features of the X inactivation process are conserved between marsupials and eutherians. Curr Biol 19:1478–1484.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey JR, Kumari M, Aivaliotis MJ, et al. (1996) Analysis of the cDNA and encoded protein of the human testis-specific PGK-2 gene. Dev Genet 19:321–332.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Wakefield MJ, Aken B, et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:167–177.

    Article  PubMed  CAS  Google Scholar 

  • Mueller JL, Mahadevaiah SK, Park PJ, et al. (2008) The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794–799.

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, Park PJ, Zhang LF, et al. (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667.

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT (2007) Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci USA 104:9730–9735.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006a) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006b) High expression of the mammalian X chromosome in brain. Brain Res 1126:46–49.

    Article  PubMed  CAS  Google Scholar 

  • Orr HA, Coyne JA (1989) The genetics of postzygotic isolation in the Drosophila virilis group. Genetics 121:527–537.

    PubMed  CAS  Google Scholar 

  • Potrzebowski L, Vinckenbosch N, Marques AC, et al. (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6:e80.

    Article  PubMed  Google Scholar 

  • Rens W, Grützner F, O’Brien PC, et al. (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101:16257–16261.

    Article  PubMed  CAS  Google Scholar 

  • Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57.

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, et al. (2005) The DNA sequence of the human X chromosome. Nature 434:325–337.

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD, et al. (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876.

    Article  PubMed  CAS  Google Scholar 

  • Saifi GM, Chandra HS (1999) An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc R Soc Lond B Biol Sci 266:203–209.

    Article  CAS  Google Scholar 

  • Schoenmakers S, Wassenaar E, Hoogerbrugge JW, et al. (2009) Female meiotic sex chromosome inactivation in chicken. PLoS Genet 5:e1000466.

    Article  PubMed  Google Scholar 

  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625.

    Article  PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837.

    Article  PubMed  CAS  Google Scholar 

  • Small K, Iber J, Warren ST (1997) Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet 16:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V (1998) Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome 9:590–592.

    Article  PubMed  CAS  Google Scholar 

  • Sutou S, Mitsui Y, Tsuchiya K (2001) Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm Genome 12:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Veyrunes F, Waters PD, Miethke P, et al. (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–973.

    Article  PubMed  CAS  Google Scholar 

  • Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7:645–653.

    Article  PubMed  CAS  Google Scholar 

  • Vogel W, Jainta S, Rau W, et al. (1998) Sex determination in Ellobius lutescens: the story of an enigma. Cytogenet Cell Genet 80:214–221.

    Article  PubMed  CAS  Google Scholar 

  • Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426.

    Article  PubMed  Google Scholar 

  • Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14:1861–1869.

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Delbridge ML, Deakin JE, et al. (2005) Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution. Chromosome Res 13:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Wallis MC, Graves JAM (2007) Mammalian sex–Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 18:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Wilda M, Bachner D, Zechner U, et al. (2000) Do the constraints of human speciation cause expression of the same set of genes in brain, testis, and placenta? Cytogenet Cell Genet 91:300–302.

    Article  PubMed  CAS  Google Scholar 

  • Zechner U, Wilda M, Kehrer-Sawatzki H, et al. (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 17:697–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Delbridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Delbridge, M.L. (2010). Gene Content of the Mammalian X Chromosome. In: Deakin, J., Waters, P., Marshall Graves, J. (eds) Marsupial Genetics and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9023-2_9

Download citation

Publish with us

Policies and ethics