Skip to main content

Insight into Evolution of Gene Regulation Networks from the Opossum Genome

  • Chapter
  • First Online:
Marsupial Genetics and Genomics

Abstract

The Brazilian short-tailed grey opossum Monodelphis domestica was the first marsupial genome to be sequenced. The high quality draft genome sequence has provided significant new understanding of mammal genome evolution, suggesting that innovation in protein coding genes occurs primarily by diversification of existing gene families and that truly novel protein coding genes are rare. The opossum genome also highlights the magnitude of the role transposable elements have had in shaping gene regulatory networks, including X chromosome inactivation. The rate of innovation of new conserved non-coding elements is 20 fold higher than for protein coding genes, and a substantial portion of the novel eutherian specific conserved non-coding elements can be attributed to arising from transposable elements. Combined with insights into the role of recombination on genome composition and structure, the opossum genome has provided unique insight into the forces that shaped the genomes of all mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97:6634–6639.

    Article  PubMed  CAS  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N, et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Belov K, Sanderson CE, Deakin JE, et al. (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17: 982–991.

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield JF (2005a). Evolutionary forces generating sequence homogeneity and heterogeneity within retrotransposon families. Cytogenet Genome Res 110:383–391.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield JF (2005b). The ecology of the genome – mobile DNA elements and their hosts. Nat Rev Genet 6:128–136.

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563.

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404.

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Charchar FJ, Kinston S, et al. (2003) Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprinting. Genomics 81:249–259.

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775.

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Bogwitz MR, McCart C, et al. (2007) Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 17:1071–1077.

    Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium et al. (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87.

    Article  Google Scholar 

  • Davidson EH (2006) The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic, Burlington and San Diego.

    Google Scholar 

  • Duke SE, Samollow PB, Mauceli E, Lindblad-Toh K, Breen M (2007) Integrated cytogenetic BAC map of the genome of the gray, short-tailed opossum, Monodelphis domestica. Chromosome Res 15:361–370.

    PubMed  CAS  Google Scholar 

  • Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655.

    Article  PubMed  CAS  Google Scholar 

  • Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320.

    Article  PubMed  CAS  Google Scholar 

  • Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 12:701–709.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405.

    Article  PubMed  CAS  Google Scholar 

  • Gentles AJ, Wakefield MJ, Kohany O, et al., (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521.

    Article  PubMed  CAS  Google Scholar 

  • Goodstadt L, Heger A, Webber C, Ponting CP (2007) An analysis of the gene complement of a marsupial, Monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res 17:969–981.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation; a missing term in the science of form. Paleobiology 8:4–15.

    Google Scholar 

  • Graves JAM (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos Trans R Soc Lond B Biol Sci 350:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Hore TA, Koina E, Wakefield MJ, Graves JAM (2007) The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15:147–161.

    Article  PubMed  CAS  Google Scholar 

  • Huttley GA, Jakobsen IB, Wilson SR, Easteal S (2000) How important is DNA replication for mutagenesis? Mol Biol Evol 17:929–937.

    Article  PubMed  CAS  Google Scholar 

  • IHGSC (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945.

    Article  Google Scholar 

  • Kamal M, Xie X, Lander ES (2006) A large family of ancient repeat elements in the human genome is under strong selection. Proc Natl Acad Sci USA 103:2740–2745.

    Article  PubMed  CAS  Google Scholar 

  • Koina E, Chaumeil J, Greaves IK, Tremethick DJ, Graves JA (2009) Specific patterns of histone marks accompany X chromosome inactivation in a marsupial. Chromosome Res 17:115–126.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay H, Yap VB, Ying H, Huttley GA (2008) Pitfalls of the most commonly used models of context dependent substitution. Biol Direct 3:52.

    Article  PubMed  Google Scholar 

  • Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Royo H, VandeBerg JL, McCarrey JR, Mackay S, Turner JM (2009) Key features of the X inactivation process are conserved between marsupials and eutherians. Curr Biol 19:1478–1484.

    Article  PubMed  CAS  Google Scholar 

  • Margulies EH, NISC Comparative Sequencing Program, Maduro VV, et al. (2005) Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc Natl Acad Sci USA 102:3354–3359.

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25:930–939.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Wakefield MJ, Aken B, et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:167–177.

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium Waterston RH, Lindblad-Toh K, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16:864–874.

    Article  PubMed  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647.

    Article  PubMed  CAS  Google Scholar 

  • Sado T, Fenner MH, Tan SS, Tam P, Shioda T, Li E (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225:294–303.

    Article  PubMed  CAS  Google Scholar 

  • Samollow PB, Gouin N, Miethke P, et al. (2007) A microsatellite-based, physically anchored linkage map for the gray, short-tailed opossum (Monodelphis domestica). Chromosome Res 15:269–281.

    PubMed  CAS  Google Scholar 

  • Shannon M, Hamilton AT, Gordon L, Branscomb E, Stubbs L (2003) Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters. Genome Res 13:1097–1110.

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Shabalina SA, Harris DG, Spouge JL, Kondrashovi AS (2003) Conserved fragments of transposable elements in intergenic regions: evidence for widespread recruitment of MIR- and L2-derived sequences within the mouse and human genomes. Genet Res 82:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Elliott DJ, et al. (2002) Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 115:4097–4105.

    Article  PubMed  CAS  Google Scholar 

  • Wakefield MJ, Graves JAM (2003) The kangaroo genome. Leaps and bounds in comparative genomics. EMBO Rep 4:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Wakefield MJ, Graves JAM (2005) Marsupials and monotremes sort genome treasures from junk. Genome Biol 6:218.

    Article  PubMed  Google Scholar 

  • Wakefield MJ, Keohane AM, Turner BM, Graves JA (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc Natl Acad Sci USA 94:9665–9668.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Willard HF, Mukherjee S, Furey TS (2006) Evidence of Influence of Genomic DNA Sequence on Human X Chromosome Inactivation. PLoS Comput Biol 2:e113.

    Article  PubMed  Google Scholar 

  • Warren WC, Hillier LW, Graves JAM, et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Wakefield .

Editor information

Editors and Affiliations

Glossary

N50

The size of scaffold or contig for which half of all bases are in scaffolds or contigs that are smaller.

Neofunctionalization

The mutation of a duplicated copy of a gene to undertake a completely novel function (distinct from subfunctionalization where the role of the gene in specific tissues, or one function of a multidomain protein is split between the duplicate copies of the gene).

Exaptation

The co-option by selection for a new function of a structure that has evolved under selective pressure for an unrelated function or under neutral conditions with no functional fitness advantage (Gould and Vrba, 1982).

LINE

Long Interspersed Nuclear Element, a family of retrotransposons common in mammals which is transcribed as RNA and intergrates as additional reverse transcribed copies in genome.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wakefield, M.J., Papenfuss, A.T. (2010). Insight into Evolution of Gene Regulation Networks from the Opossum Genome. In: Deakin, J., Waters, P., Marshall Graves, J. (eds) Marsupial Genetics and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9023-2_7

Download citation

Publish with us

Policies and ethics