Skip to main content

Agent-Based Models – Because They’re Worth It?

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

We address the question of when the relative complicatedness of spatial agent-based models (ABMs) compared to alternative modelling approaches can be justified. The spectrum of ABM types from simple, abstract models to complicated models aspiring to realism makes a single answer impossible. Therefore we focus on identifying circumstances where the advantages of ABMs outweigh the additional effort involved. We first recall the reasons for building any model: to simplify the phenomena at hand to improve understanding. Thus, the representational detail of ABMs may not always be desirable. We suggest that critical aspects of the phenomena of interest that help us to assess the likely usefulness of ABMs are the nature of the decisions which actors make, and how their decisions relate to the spatio-temporal grain and extent of the system. More specifically, the heterogeneity of the decision-making context of actors, the importance of interaction effects, and the overall size and organization of the system must be considered. We conclude by suggesting that there are good grounds based on our discussion for ABMs to become a widely used approach in understanding many spatial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton University Press.

    Google Scholar 

  • Bar-Yam, Y. (1997). Dynamics of complex systems. Reading: Perseus Books.

    Google Scholar 

  • Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models and fractals. Cambridge: MIT Press.

    Google Scholar 

  • Berec, L. (2002). Techniques of spatially explicit individual-based models: Construction, simulation, and mean-field analysis. Ecological Modelling, 150, 55–81.

    Article  Google Scholar 

  • Birkin, M., & Wu, B. (2012). A review of microsimulation and hybrid agent-based approaches. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 51–68). Dordrecht: Springer.

    Google Scholar 

  • Bretagnolle, A., Pumain, D., & Vacchiani-Marcuzzo, C. (2009). The organization of urban systems. In D. Lane, D. Pumain, S. E. van der Leeuw, & G. West (Eds.), Complexity perspectives in innovation and social change (pp. 197–220). New York: Springer.

    Chapter  Google Scholar 

  • Brown, D. G., & Robinson, D. T. (2006). Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecology and Society, 11, 46–65.

    Google Scholar 

  • Carpenter, S. R. (2003). The need for fast-and-frugal models. In C. D. Canham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in ecosystem science (pp. 455–460). Princeton: Princeton University Press.

    Google Scholar 

  • Cetin, N., Nagel, K., Raney, B., & Voellmy, A. (2002). Large-scale multi-agent transportation simulations. Computer Physics Communications, 147, 559–564.

    Article  Google Scholar 

  • Clark, J. S., Carpenter, S. R., Barber, M., Collins, S., Dobson, A., Foley, J. A., et al. (2001). Ecological forecasts: An emerging imperative. Science, 293, 657–660.

    Article  Google Scholar 

  • Couclelis, H. (2002). Why I no longer work with agents: A challenge for ABMs of human-environment interactions. In D. C. Parker, T. Berger, & S. M. Manson (Eds.), Agent-based models of land-use and land-cover change: Report and review of an international workshop, Irvine, Oct 4–7, 2001 (pp. 3–5). Louvain-la-neuve, Belgium: LUCC International Project Office.

    Google Scholar 

  • Crooks, A. T. & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 85–105). Dordrecht: Springer.

    Google Scholar 

  • Deaton, M. L., & Winebrake, J. J. (2000). Dynamic modeling of environmental systems. New York: Springer.

    Book  Google Scholar 

  • Dietrich, W. E., Belugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., & Roering, J. J. (2003). Geomorphic transport laws for predicting landscape form and dynamics. In P. R. Wilcock & R. M. Iverson (Eds.), Prediction in geomorphology (Geophysical monograph, Vol. 135, pp. 1–30). Washington DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Eberlein, R. L., & Peterson, D. W. (1994). Understanding models with VenSim. In J. D. W. Morecroft & J. D. Sterman (Eds.), Modeling for learning organizations (pp. 339–348). New York, NY: Productivity Press.

    Google Scholar 

  • Ehrlich, P. R., & Levin, S. A. (2005). The evolution of norms. PLoS Biology, 3, e194. doi:10.1371/journal.pbio.0030194.

    Article  Google Scholar 

  • Epstein, J. M. (2009). Modelling to contain pandemics. Nature, 460, 687.

    Article  Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Washington, DC: The Brookings Institute.

    Google Scholar 

  • Fossett, M. A. (2006). Ethnic preferences, social distance dynamics, and residential segregation: Theoretical explorations using simulation analysis. Journal of Mathematical Sociology, 30, 185–274.

    Article  Google Scholar 

  • Goering, J. (2006). Shelling [sic] redux: How sociology fails to make progress in building and empirically testing complex causal models regarding race and residence. Journal of Mathematical Sociology, 30, 299–317.

    Article  Google Scholar 

  • Grimm, V. & Railsback, S. F. (2012). Designing, formulating and communicating agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 361–377). Dordrecht: Springer.

    Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310, 987–991.

    Article  Google Scholar 

  • Gross, D., & Strand, R. (2000). Can agent-based models assist decisions on large-scale practical problems? A philosophical analysis. Complexity, 5, 26–33.

    Article  Google Scholar 

  • Haklay, M., Schelhorn, T., O’Sullivan, D., & Thurstain-Goodwin, M. (2001). “So go down town”: Simulating pedestrian movement in town centres. Environment and Planning B: Planning & Design, 28, 343–359.

    Article  Google Scholar 

  • Helbing, D., Molnár, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28, 361–383.

    Article  Google Scholar 

  • Iwasa, Y. (2000). Lattice models and pair approximation in ecology. In U. Dieckmann, R. Law, & J. A. J. Metz (Eds.), The geometry of ecological interactions: Simplifying spatial complexity (pp. 227–252). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems, 1, 7–38.

    Article  Google Scholar 

  • Kerridge, J., Hine, J., & Wigan, M. (2001). Agent-based modelling of pedestrian movements: The questions that need to be asked and answered. Environment and Planning B: Planning and Design, 28, 327–341.

    Article  Google Scholar 

  • Matthews, R. (2006). The People and Landscape Model (PALM): Towards full integration of human decision-making and biophysical simulation models. Ecological Modelling, 194, 329–343.

    Article  Google Scholar 

  • Millington, J., Romero-Calcerrada, R., Wainwright, J., Perry, G. W. L. (2008). An agent-based model of Mediterranean agricultural land-use/cover change for examining wildfire risk. Journal of Artificial Societies and Social Simulation, 11(4), 4. Available at: http://jasss.soc.surrey.ac.uk/11/4/4.html

  • Milne, E., Aspinall, R. J., & Veldkamp, T. A. (2009). Integrated modeling of natural and social systems in land change science. Landscape Ecology, 24, 1145–1147.

    Article  Google Scholar 

  • Muetzelfeldt, R. I., & Massheder, J. (2003). The Simile visual modelling environment. European Journal of Agronomy, 18, 345–358.

    Article  Google Scholar 

  • O’Sullivan, D. (2008). Geographical information science: Agent-based models. Progress in Human Geography, 32, 541–550.

    Article  Google Scholar 

  • O’Sullivan, D., & Haklay, M. (2000). Agent-based models and individualism: Is the world agent-based? Environment and Planning A, 32, 1409–1425.

    Article  Google Scholar 

  • Perry, G. L. W. (2009). Modelling and simulation. In N. Castree, D. Demeritt, D. Liverman, & B. Rhoads (Eds.), A companion to environmental geography (pp. 336–357). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82, 609–623.

    Article  Google Scholar 

  • Rand, W., Zellner, M., Page, S. E., Riolo, R., Brown, D. G., & Fernandez, L. E. (2002). The complex interaction of agents and environments: An example in urban sprawl. In C. Macal & D. Sallach, (Eds.), Proceedings of Agent 2002: Social Agents: Ecology, Exchange, and Evolution (pp. 149–161). Chicago: University of Chicago and Argonne National Lab. Available at http://www.dis.anl.gov/pubs/2002%20Proceedings.pdf

  • Sanders, L., Pumain, D., Mathian, H., Guerin-Pace, F., & Bura, S. (1997). SIMPOP: A multi-agents system for the study of urbanism. Environment and Planning B: Planning and Design, 24, 287–305.

    Article  Google Scholar 

  • Sayer, A. (1985). The difference that space makes. In D. Gregory & J. Urry (Eds.), Social relations and spatial structures (pp. 49–66). London: Macmillan.

    Google Scholar 

  • Schelling, T. C. (1969). Models of segregation. American Economic Association Papers and Proceedings, 59, 488–493.

    Google Scholar 

  • Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton.

    Google Scholar 

  • Tesfatsion, L., & Judd, K. L. (2006). Handbook of computational economics, volume II: Agent-based computational economics. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Toroczkai, Z., & Guclu, H. (2007). Proximity networks and epidemics. Physica A: Statistical Mechanics and Its Applications, 378, 68–75.

    Article  Google Scholar 

  • Weaver, W. (1948). Science and complexity. American Scientist, 36, 536–544.

    Google Scholar 

  • Wegener, M. (2004). Overview of land-use transport models. In D. A. Hensher & K. Button (Eds.), Transport geography and spatial system (pp. 127–146). Kidlington: Pergamon/Elsevier Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O’Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

O’Sullivan, D., Millington, J., Perry, G., Wainwright, J. (2012). Agent-Based Models – Because They’re Worth It?. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_6

Download citation

Publish with us

Policies and ethics