Skip to main content

Multi-agent System Modelling for Urban Systems: The Series of SIMPOP Models

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

The SIMPOP simulation model was the first application of a multi-agent system (MAS) in geography and has been followed by a series of related applications. This chapter summarizes a few specific features of this series of models and the main insights that have been gained from this experiment. As the first objective of these models was to reconstruct the evolution of urban settlements at broad scales in geographical space and time (i.e. at national or continental levels and for decades or centuries), we explain the selection of the stylised facts making up knowledge about the dynamics of complex urban systems. They are used in the simulation models so as to reconstruct the interaction networks structuring the systems of cities. The originality of SIMPOP is thus to simulate the emergence and further hierarchical and functional differentiation of interdependent cities from interactions between them, so that the agents in this model are immobile entities, representing complex aggregation of individuals at meso-level. The quality of MAS is underlined for its flexibility in modelling spatial interactions with varied geographical configurations, and for its ability to deal with objects occurring on different scales, between geospatial entities that have expanding range of activities. We explain how we set about restricting the impact of the difficulties inherent in this type of modelling, which have been the subject of frequent criticism, in particular for their excessive complexity, thought to make any validation procedure unfeasible. In particular, we endeavour to describe in detail the various stages of model construction, on the basis of stylised facts obtained via numerous observations and comparisons, and set out to perform a multi-scale validation by testing the plausibility of the results delivered by the model at different aggregation levels. However, despite these promising methods of validation, further improvements are necessary for fully exploiting the capacities of simulation by using more powerful computing devices and validation methods. In this direction, the generic model SIMPOP will be completed and ­transferred to an open and scalable simulation platform, and specific versions will be developed and tested for the main regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We acknowledge here the participation of computer scientists, Jacques Ferber, Stéphane Bura, Alexis Drogoul, Benoît Glisse, Jean-Louis Giavitto, Guillaume Hutzler, and Thomas Louail, as well as statisticians and geographers, Lena Sanders, Hélène Mathian, France Guérin-Pace, Anne Bretagnolle, Céline Vacchiani-Marcuzzo, Arnaud Banos, Clara Schmitt and Sébastien Rey to the conception and use of these models. The European programme ISCOM (2002–2006) directed by David Lane supported the development of the SIMPOP2 model.

  2. 2.

    This project was supported by the EU Programme called TiGreSS directed by N. Winter.

  3. 3.

    Although implemented in the SIMPOP2 and EUROSIM models, the role of this political entity in the dynamics has not yet been fully explored. It may reveal essential for modelling the recent dynamics of urban systems in countries such as Russia or China.

  4. 4.

    We acknowledge the support of Thomas Louail ‘s PhD by the R2D2 DIM of Region Ile-de-France.

  5. 5.

    We acknowledge the supports of ADEME for Clara Schmitt’s PhD and of R2D2 DIM Région Ile-de-France for Sébastien Rey.

  6. 6.

    We acknowledge the support of ANR Transmondyn and ERC grant GeodiverCity for various developments of this platform.

References

  • Allen, P. (1997). Cities and regions as self-organising systems. Amsterdam: Gordon and Breach.

    Google Scholar 

  • Banos, A. (2009). Simulating pedestrian behavior in complex and dynamic environments: An agent-based perspective. In F. Bavaud & C. Mager (Eds.), European handbook of theoretical and quantitative geography (pp. 1–27). Lausanne: FGSE.

    Google Scholar 

  • Batty, M. (2008). Fifty years of urban modelling: Macrostatics to micro dynamics. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems (pp. 1–20). Heidelberg: Physica Verlag.

    Chapter  Google Scholar 

  • Batty, M., & Torrens, P. (2001). Modelling complexity. The limits to prediction. Cybergeo, 201, 1–24.

    Google Scholar 

  • Berry, B. J. L. (1964). Cities as systems within systems of cities. Papers of the Regional Science Association, 13, 147–163.

    Google Scholar 

  • Bretagnolle, A. (1999). Les systèmes de villes dans l’espace-temps : effets de l’accroissement de la vitesse des déplacements sur la taille et l’espacement des villes. Thèse de doctorat de l’Université Paris I.

    Google Scholar 

  • Bretagnolle, A., & Pumain, D. (2010). Simulating urban networks through multiscalar space-time dynamics (Europe and United States, 17th -20th centuries). Urban Studies, 47(13), 2819–2839.

    Article  Google Scholar 

  • Bretagnolle, A., Giraud T., & Mathian H. (2008). La mesure de l’urbanisation des États-Unis, des premiers compto.irs coloniaux aux Metropolitan Statistical Areas (1790–2000). Cybergeo, 427, 1–36.

    Google Scholar 

  • Bura, S., Guérin-Pace, F., Mathian, H., Pumain, D., & Sanders, L. (1996). Multi-agent systems and the dynamics of a settlement system. Geographical Analysis, 28(2), 161–178.

    Article  Google Scholar 

  • Deissenberg, C., van der Hoog, S., & Dawid, H. (2008). Eurace: A massively parallel agent-based model of the European economy. Applied Mathematics and Computation, 204(2), 541–552.

    Article  Google Scholar 

  • Diamond, J. M. (1997). Guns, germs and steel: The fates of human societies. W.W. Norton & Co.

    Google Scholar 

  • Ferber, J. (1995). Les systèmes multi-agents. Vers une intelligence collective. Paris: Inter Editions.

    Google Scholar 

  • Glisse, B. (2007). Exploration scientifique par la conception collaborative de systèmes multi-agents. Thèse d’informatique de l’Université Paris 6.

    Google Scholar 

  • Gulden, T. R., & Hammond, R. A. (2012). Beyond Zipf: An agent-based understanding of city size distributions. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 677–704). Dordrecht: Springer.

    Google Scholar 

  • Hägerstrand, T. (1952). The propagation of innovation waves. Lund: The Royal University of Lund.

    Google Scholar 

  • Lane, D., Pumain, D., van der Leeuw, S., & West, G. (Eds.). (2009). Complexity perspectives on innovation and social change (Methodos series, Vol. 7). Berlin: ISCOM, Springer.

    Google Scholar 

  • Louail, T. (2010). Comparer les morphogenèses urbaines en Europe et aux Etats-Unis par la simulation à base d’agents – Approches multi-niveaux et environnements de simulation spatiale. Université Paris 6, thèse de doctorat.

    Google Scholar 

  • Mathian, H., & Sanders, L. (2009). “Jeux d’échelles dans les pratiques de calibrage et de validation des modèles de simulation en géographie ”, atelier scientifique du CNRS, “Modélisation des phénomènes sociaux et spatiaux: évaluation et validation des modèles de simulation individu-centrés”, Berder 12–14 mai. http://s4.csregistry.org/tiki-index.php?page=Les+contributions

  • Morrill, R. L. (1965). Migration and the spread and growth of urban settlement (Lund studies in geography, series B, Vol. 26). Lund: Royal University of Lund, Department of Geography.

    Google Scholar 

  • Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Dordrecht: Springer.

    Google Scholar 

  • Paulus, F. (2004). Coévolution dans les systèmes de villes : croissance et spécialisation des aires urbaines françaises de 1950 à 2000. Université Paris I, thèse de doctorat.

    Google Scholar 

  • Pred, A. (1977). City systems in advanced societies. London: Hutchison.

    Google Scholar 

  • Pumain, D. (1982). La dynamique des villes. Paris: Economica.

    Google Scholar 

  • Pumain, D. (1997). Vers une théorie évolutive des villes. L’Espace Géographique, 2, 119–134.

    Google Scholar 

  • Pumain, D. (1998). Urban research and complexity. In C. S. Bertuglia, G. Bianchi, & A. Mela (Eds.), The city and its sciences (pp. 323–362). Heidelberg: Physica Verlag.

    Google Scholar 

  • Pumain, D. (2000). Settlement systems in the evolution. Geografiska Annaler (Series B), 82(2), 73–87.

    Article  Google Scholar 

  • Pumain, D. (2006). Alternative explanations of hierarchical differentiation in urban systems. In D. Pumain (Ed.), Hierarchy in natural and social sciences (Methodos series, Vol. 3, pp. 169–222). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Pumain, D. (2011a). Le contexte en sciences sociales et dans les modèles de simulation en géographie. In J. P. Muller (Ed.), Le contexte dans les modèles de systèmes complexes. Paris: Chemins de Traverse. forthcoming.

    Google Scholar 

  • Pumain, D. (2011b). Urban systems dynamics, urban growth and scaling laws: The question of ergodicity. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age: An overview with implications to urban planning and design. Heidelberg/Berlin: Springer.

    Google Scholar 

  • Pumain, D., & Saint-Julien, T. (1979). Les transformations récentes du système urbain français. L’Espace Géographique, 3, 203–211.

    Google Scholar 

  • Pumain, D., Sanders, L., & Saint-Julien, T. (1989). Villes et auto-organisation. Paris: Economica.

    Google Scholar 

  • Pumain, D., Bretagnolle, A., & Glisse B. (2006a). Modelling the future of cities. In ECCS’06, Proceedings of the European Conference of Complex systems, University of Oxford, 25–29 Sept 2006. http://halshs.archives-ouvertes.fr/halshs-00145925/en/

  • Pumain, D., Paulus, F., Vacchiani, C., & Lobo, J. (2006b). An evolutionary theory for interpreting urban scaling laws. Cybergeo, 343, 1–20.

    Google Scholar 

  • Pumain, D., Sanders, L., Bretagnolle, A., Glisse, B., & Mathian, H. (2009). The future of urban systems. In D. Lane, D. Pumain, S. Van der Leeuw, & G. West (Eds.), Complexity perspectives on innovation and social change (Methodos series). Berlin: ISCOM, Springer. chapter 12.

    Google Scholar 

  • Rey, S. (2011). A grid and GIS-based simulation platform for computational geography. PhD thesis, University Paris I.

    Google Scholar 

  • Robic, M. C. (1982). Cent ans avant Christaller, une théorie des lieux centraux. L’Espace Géographique, 1, 5–12.

    Google Scholar 

  • Robson, B. (1973). Urban growth, an approach. London: Methuen.

    Google Scholar 

  • Rozenblat, C. (2010). Opening the black box of agglomeration economies for measuring cities competitiveness through international firm networks. Urban Studies, 47(13), 2841–2865.

    Article  Google Scholar 

  • Rozenblat, C., & Pumain, D. (2007). Firm linkages, innovation and the evolution of urban systems. In P. J. Taylor, B. Derruder, P. Saey, & F. Witlox (Eds.), Cities in globalisation (pp. 130–156). London: Routledge.

    Google Scholar 

  • Sanders, L. (1992). Systèmes de villes et synergétique. Paris: Anthropos.

    Google Scholar 

  • Sanders, L., Pumain, D., Mathian, H., Guérin-Pace, F., & Bura, S. (1997). SIMPOP, a multi-agents system for the study of urbanism. Environment and Planning B, 24, 287–305.

    Article  Google Scholar 

  • Sanders, L., Favaro, J. M., Glisse, B., Mathian, H., & Pumain, D. (2007). Intelligence artificielle et agents collectives: le modèle Eurosim. Cybergeo, European Journal of Geography, 392, 1–16.

    Google Scholar 

  • Schmitt, C. (2011). SIMPOPClim: From local to global environmental constraint on urban ­evolution. PhD thesis, University Paris I.

    Google Scholar 

  • Shearmur, R. (2010). Innovation et développement territorial? L’innovation comme processus (presque) a-territorial. Bulletin de la Société Géographique de Liège, 55, 17–27.

    Google Scholar 

  • Zelinski W. (1971). The hypothesis of the mobility transition. Geographical review, 61, 219–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Pumain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pumain, D. (2012). Multi-agent System Modelling for Urban Systems: The Series of SIMPOP Models. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_36

Download citation

Publish with us

Policies and ethics