Skip to main content

Applied Pedestrian Modeling

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

With an increasing world population and with more cost effective transportation, mass gatherings become ever more frequent. The total size of such gatherings is often as large as millions of people. Furthermore, everyday life in cities becomes increasingly crowded with people. This development has prompted better solutions to mitigate crowded places and make them safer as well as more efficient in terms of travel time. One way to approach this crowd problem is to use crowd modeling tools to assess and optimize locations where pedestrian crowds move around. Within the last decade, crowd modeling has become a mature science and there now exist well calibrated pedestrian models that can reproduce empirically observed crowd features. In this chapter, we will introduce the field of crowd modeling, explain how crowd models can be calibrated with empirical data, and expand a bit on how navigation works in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batty, M., Desyllas, J., & Duxbury, E. (2003). Safety in numbers? Modelling crowds and designing control for the Notting Hill carnival. Urban Studies, 40(8), 1573–1590.

    Article  Google Scholar 

  • Bauer, D., & Kitazawa, K. (2010). Using laser scanner data to calibrate certain aspects of microscopic pedestrian motion models. In W. W. F. Klingsch, C. Rogsch, A. Schadschneider, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2008 (pp. 83–94). Berlin: Springer.

    Chapter  Google Scholar 

  • Blue, V. J., & Adler, J. L. (2000). Cellular automata microsimulation of bi-directional pedestrian flows. Transportation Research Record, 1678, 135–141. doi:http://dx.doi.org/10.3141/1678-17.

    Article  Google Scholar 

  • Bolay, K. (1998). Nichtlineare Phanomene in einem fluid-dynamischen Verkehrsmodell. Unpublished diploma thesis, University of Stuttgart, Stuttgart.

    Google Scholar 

  • Buchmüller, S., & Weidmann, U. (2006). Lehrstuhl für verkehrssysteme. Parameters of pedestrians, pedestrian traffic and walking facilities. Zurich: Institute for Transport Planning and Systems (IVT) ETH Zurich.

    Google Scholar 

  • Chattaraj, U., Seyfried, A., & Chakroborty, P. (2009). Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems, 12(3), 393–405.

    Article  Google Scholar 

  • Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 85–105). Dordrecht: Springer.

    Google Scholar 

  • de Berg, M., van Krefeld, M., Overmars, M., & Schwarzkopf, O. (1997). Computational geometry. Berlin: Springer.

    Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  Google Scholar 

  • Dressler, D., Groß, M., Kappmeier, J. P., Kelter, T., Kulbatzki, J., Plumpe, D., Schlechter, G., Schmidt, M., Skutella, M., & Temme, S. (2010). On the use of network flow techniques for assigning evacuees to exits. Procedia Engineering, 3, 205–215.

    Article  Google Scholar 

  • Fischer, H. (1933). Uber die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Unpublished dissertation, Technische Hochschule Dresden, Dresden.

    Google Scholar 

  • Fruin, J. J., & Strakosch, G. R. (1971). Pedestrian planning and design. New York: Metropolitan Association of Urban Designers and Environmental Planners.

    Google Scholar 

  • Hankin, B. D., & Wright, R. A. (1958). Passenger flow in subways. Operational Research Quarterly, 9, 81–88.

    Article  Google Scholar 

  • Helbing, D. (1992). A fluid-dynamic model for the movement of pedestrians. Complex Systems, 6, 391–415.

    Google Scholar 

  • Helbing, D., & Johansson, A. (2009). Pedestrian, crowd and evacuation dynamics. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (Vol. 16, p. 6476). New York: Springer.

    Google Scholar 

  • Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282–4286.

    Article  Google Scholar 

  • Hoogendoorn, S. P., & Daamen, W. (2005). Pedestrian behavior at bottlenecks. Transportation Science, 39(2), 147–159.

    Article  Google Scholar 

  • Hoogendoorn, S. P., & Daamen, W. (2009). A novel calibration approach of microscopic pedestrian models. In H. Timmermans (Ed.), Pedestrian behavior: Models, data collection and applications (pp. 195–214). Bingley: Emerald.

    Google Scholar 

  • Hughes, R. L. (2003). The flow of human crowds. Annual Review of Fluid Mechanics, 35, 169.

    Article  Google Scholar 

  • Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.

    Google Scholar 

  • Jeong, W.-K., & Whitaker, R. (2008). A fast iterative method for Eikonal equations. SIAM Journal on Scientific Computing, 30(5), 2512–2534.

    Article  Google Scholar 

  • Johansson, A. (2009). Data-driven modeling of pedestrian crowds. Saarbrücken: VDM Verlag Dr. Mueller.

    Google Scholar 

  • Johansson, A., Helbing, D., & Shukla, P. K. (2007). Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems, 10(4), 271–288.

    Article  Google Scholar 

  • Kimmel, R., & Sethian, J. A. (1998). Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8431.

    Article  Google Scholar 

  • Kirik, E. S., Yurgelyan, T. B., & Krouglov, D. V. (2009). The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model. Journal of Siberian Federal University. Mathematics & Physics, 2, 271–278.

    Google Scholar 

  • Kretz, T. (2007). Pedestrian traffic – Simulation and experiments. PhD thesis, Universitat Duisburg-Essen. urn:nbn:de:hbz:464-20070302a120944-7

  • Kretz, T. (2009a). Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment, 2009(3), P03012.

    Article  Google Scholar 

  • Kretz, T. (2009b). The use of dynamic distance potential fields for pedestrian flow around corners. In First international conference on evacuation modeling and management. Delft: Technische Universiteit Delft.

    Google Scholar 

  • Kretz, T., Bönisch, C., & Vortisch, P. (2010). Comparison of various methods for the calculation of the distance potential field. In W. W. F. Klingsch, C. Rogsch, A. Schadschneider, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2008 (pp. 335–346). Berlin: Springer.

    Chapter  Google Scholar 

  • Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., & Schreckenberg, M. (2006a). Experimental study of pedestrian counterflow in a corridor. Journal of Statistical Mechanics: Theory and Experiment, 2006(10), P10001.

    Article  Google Scholar 

  • Kretz, T., Grünebohm, A., & Schreckenberg, M. (2006b). Experimental study of pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment, 2006(10), P10014.

    Article  Google Scholar 

  • Lovas, G. G. (1994). Modeling and simulation of pedestrian traffic flow. Transportation Research, 28B, 429–443.

    Google Scholar 

  • Meyer-König, T., Klüpfel, H., & Schreckenberg, M. (2002). Assessment and analysis of evacuation processes on passenger ships by microscopic simulation. In M. Schreckenberg & S. D. Sharma (Eds.), Pedestrian and evacuation dynamics (pp. 297–302). Berlin: Springer.

    Google Scholar 

  • Muir, H. C., Bottomley, D. M., & Marrison, C. (1996). Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. The International Journal of Aviation Psychology, 6, 57–77.

    Article  Google Scholar 

  • Musse, S. R., Babski, C., Capin, T., & Thalmann, D. (1998). Crowd modelling in collaborative virtual environments. In Proceedings of the 1998 ACM symposium on Virtual reality software and technology (pp. 115–123). New York: ACM.

    Chapter  Google Scholar 

  • Navin, P. D., & Wheeler, R. J. (1969). Pedestrian flow characteristics. Traffic Engineering, 39, 31–36.

    Google Scholar 

  • Nishinari, K., Kirchner, A., Namazi, A., & Schadschneider, A. (2004). Extended floor field CA model for evacuation dynamics. IEICE Transactions on Information and Systems, E87-D, 726–732.

    Google Scholar 

  • O’Sullivan, D., & Haklay, M. (2000). Agent based models and individualism: Is the world agent-based? Environment and Planning A, 32, 1409–1425.

    Article  Google Scholar 

  • Older, S. J. (1968). Movement of pedestrians on footways in shopping streets. Traffic Engineering and Control, 10, 160–163.

    Google Scholar 

  • Popovic, J., Seitz, S. M., & Erdmann, M. (2003). Motion sketching for control of rigid-body simulations. ACM Transactions on Graphics, 22(4), 1034–1054.

    Article  Google Scholar 

  • Portz, A., & Seyfried, A. (2011). Analyzing Stop-and-Go Waves by Experiment and Modeling. In: R. D. Peacock, E. D. Kuligowski, & J. D. Averill (Eds) Pedestrian and evacuation dynamics (pp 577–586) Springer.

    Google Scholar 

  • Predtechenskii, V. M., & Milinskii, A. I. (1978). Planning for foot traffic flow in buildings. Washington, DC: Amerind Pub. Co.

    Google Scholar 

  • PTV Planung Transport Verkehr AG. (2010). VISSIM 5.30 user manual.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Rogsch, C., & Klingsch, W. (2010). Basics of software – tools for pedestrian movement identification and results. Fire Technology, (5 November 2010), 1–21.

    Google Scholar 

  • Schultz, M., Kretz, T., & Fricke, H. (2010). Solving the direction field for discrete agent motion. In S. Bandini, S. Manzoni, H. Umeo, & G. Vizzari (Eds.), Cellular automata – 9th international conference on cellular automata for research and industry (ACRI 2010). Berlin: Springer.

    Google Scholar 

  • Seyfried, A., Boltes, M., Kuhler, J., Klingsch, W., Portz, A., Rupprecht, T., Schadschneider, A., Steffen, B., & Winkens, A. (2010a). Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In W. W. F. Klingsch, C. Rogsch, A. Schadschneider, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2008 (pp. 145–156). Berlin: Springer.

    Chapter  Google Scholar 

  • Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., & Klingsch, W. (2009). New insights into pedestrian flow through bottlenecks. Transportation Science, 43(3), 395–406.

    Article  Google Scholar 

  • Seyfried, A., Portz, A., & Schadschneider, A. (2010a). Phase coexistence in congested states of pedestrian dynamics. Cellular Automata, 496–505.

    Google Scholar 

  • Seyfried, A., Steffen, B., Klingsch, W., & Boltes, M. (2005). The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), P10002.

    Article  Google Scholar 

  • Steffen, B., & Seyfried, S. (2009). Modelling of pedestrian movement around 90 and 180 bends. In B. H. V. Topping, Y. Tsompanakis (Eds.), Proceedings of the first international conference on soft computing technology in civil, structural and environmental engineering (Paper 34). Civil-Comp Press, Stirlingshire.

    Google Scholar 

  • Treuille, A., Lee, Y., Popovic, Z. (2007). Near-optimal character animation with continuous control. ACM Transactions on Graphics 26(3). (SIGGRAPH ’07 Conference Proceedings) Article 7.

    Google Scholar 

  • Venel, J. (2010). Integrating strategies in numerical modelling of crowd motion. In W. W. F. Klingsch, C. Rogsch, A. Schadschneider, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2008 (pp. 641–646). Berlin: Springer.

    Chapter  Google Scholar 

  • Virkler, M. R., & Elayadath, S. (1994). Pedestrian density characteristics and shockwaves. In R. Akcelik (Ed.), Proceedings of the second international symposium on highway capacity (Vol. 2, pp. 671–684).

    Google Scholar 

  • Watts, J. M. (1987). Computer models for evacuation analysis. Fire Safety Journal, 12, 237–245.

    Article  Google Scholar 

  • Weidmann, U. (1993). Transporttechnik der Fußgänger – Transporttechnische Eigenschaften des Fußgängerverkehrs. Schriftenreihe des IVT 90, ETH Zürich, 3. Zweite, ergänzte Auflage, in German.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johansson, A., Kretz, T. (2012). Applied Pedestrian Modeling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_21

Download citation

Publish with us

Policies and ethics