Skip to main content

Tectonics of Unusual Crustal Accretion in the Parece Vela Basin

  • Chapter
  • First Online:

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 8))

Abstract

Despite its rapid intermediate-spreading rate, the Parece Vela Basin (PVB) shows unusual characteristics that indicate a depressed magmatic budget, such as the occurrence of numerous oceanic core complexes (OCCs) and rugged terrain, exposing abundant peridotites and gabbros. Based on the geologic interpretations of crust with analogous features on global mid-ocean ridges, we propose three possible mechanisms that can account for these unusual characteristics: (1) presence of a cold and/or refractory mantle domain, (2) declining spreading rate during the later phase of the second-stage spreading of the PVB, and (3) a transform sandwich effect. Recent numerical modeling for formation of OCC suggests that there is a minimum as well as a maximum magmatic supply necessary to produce long-lived detachment fault. In the western PVB, a cold and/or refractory mantle domain inhibited a large amount of mantle melting within an intermediate-spreading ridge, attaining the limited window of the condition of magma supply demonstrated in the numerical model in an otherwise robust magmatic environment. In the central PVB, a transform sandwich effect and/or declining spreading rate inhibited a large amount of mantle melting within an intermediate-spreading ridge, also attaining the limited window of the condition of magma supply demonstrated in the numerical model in an otherwise robust magmatic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bach W, Erzinger J, Dosso L, Bollinger C, Bougault H, Etoubleau J, Sauerwein J (1996) Unusually large Nb-Ta depletions in North Chile ridge basalts at 36°50′ to 38°56’S: major element, trace element, and isotopic data. Earth Planet Sci Lett 142:223–240

    Article  Google Scholar 

  • Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35:307–310

    Article  Google Scholar 

  • Bell RE, Buck R (1992) Crustal control of ridge segmentation inferred from observations of the Reykjanes Ridge. Nature 357:583–586

    Article  Google Scholar 

  • Blackman DK, Cann JR, Janssen B, Smith D (1998) Origin of extensional core complexes: evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. J Geophys Res 103(B9):21315–21333

    Article  Google Scholar 

  • Blackman DK, Canales JP, Harding A (2009) Geophysical signatures of oceanic core complexes. Geophys J Int 178:593–613

    Article  Google Scholar 

  • Bonatti E, Seyler M, Sushevskaya N (1993) A cold suboceanic mantle belt at the Earth’s equator. Science 261:315–320

    Article  Google Scholar 

  • Brozena JM (1986) Temporal and spatial variability of seafloor spreading processes in the northern South Atlantic. J Geophys Res 91((B1):497–510

    Article  Google Scholar 

  • Brozena JM, White RS (1990) Ridge jumps and propagations in the South Atlantic Ocean. Nature 348:149–152

    Article  Google Scholar 

  • Bruguier NJ, Minshull TA, Brozena JM (2003) Morphology and tectonics of the Mid-Atlantic Ridge 7°–12°S. J Geophys Res. doi:10.1029/2001JB001172

    Google Scholar 

  • Brunelli D, Seyler M (2010) Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). Earth Planet Sci Lett 289:393–405

    Article  Google Scholar 

  • Buck WR, Lavier LL, Poliakov ANB (2005) Modes of faulting at mid-ocean ridges. Nature 434:719–723

    Article  Google Scholar 

  • Cann JR, Blackman DK, Smith DK, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe AR, Escartín J (1997) Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385:329–332

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellean E, Okino K, Escartín J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34:605–608

    Article  Google Scholar 

  • Christie DM, West BP, Pyle DG, Hanan BB (1998) Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394:637–644

    Article  Google Scholar 

  • Constantin M (1999) Gabbroic intrusions and magmatic metasomatism in harzburgites from the Garrett transform fault: implications for the nature of the mantle±crust transition at fast-spreading ridges. Contrib Mineralog Petrol 136:111–130

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194

    Article  Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412

    Article  Google Scholar 

  • Escartín J, Mével C, MacLeod CJ, McCaig AM (2003) Constraints of deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophys Geosyst. doi:10.1029/2002GC000472

    Google Scholar 

  • Fornari DJ, Gallo DG, Edwards MH, Madsen JA, Perfit MR, Shor AN (1989) Structure and topography of the Siqueiros transform fault system: evidence for the development of intra-transform spreading centers. Mar Geophys Res 11:263–299

    Article  Google Scholar 

  • Fox PJ, Gallo DG (1984) A tectonic model for ridge-transform-ridge plate boundary: implications for the structure of oceanic lithosphere. Tectonophysics 104:205–242

    Article  Google Scholar 

  • Fujioka K, Kanamatsu T, Ohara Y, Fujimoto H, Okino K, Tamura C, Lallemand SE, Deschamps-Boldrini A, Barretto JA, Togashi N, Yamanobe H, So A (2000) Parece Vela Rift and Central Basin Fault revisited: STEPS-IV (structure, tectonics, and evolution of the Philippine Sea) cruise summary report. InterRidge News 9(1):18–22

    Google Scholar 

  • Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212:47–62

    Article  Google Scholar 

  • Gregg PM, Lin J, Behn MD, Montési LGJ (2007) Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature 448:183–187

    Article  Google Scholar 

  • Gurnis M, Müller RD, Moresi L (1998) Cretaceous vertical motion of Australia and the Australian-Antarctic Discordance. Science 279:1499–1504

    Article  Google Scholar 

  • Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621

    Article  Google Scholar 

  • Hayes DE (1988) Age-depth relationships and depth anomalies in the southeast Indian Ocean and south Atlantic Ocean. J Geophys Res 93(B4):2937–2954

    Article  Google Scholar 

  • Hékinian R, Bideau D, Cannat M, Francheteau J, Hébert R (1992) Volcanic activity and crust-mantle exposure in the ultrafast Garrett Transform fault near 13°28′S in the Pacific. Earth Planet Sci Lett 108:259–275

    Article  Google Scholar 

  • Hékinian R, Bideau D, Hébert R, Niu Y (1995) Magmatism in the Garrett transform fault (East Pacific Rise near 13°27′S). J Geophys Res 100(B6):10163–10185

    Article  Google Scholar 

  • Hékinian R, Juteau T, Gràcia E, Udintsev G, Sichler B, Sichel SE, Appriounal R, Ligi M (2000) Submersible observations of Equatorial Atlantic Mantle: the St. Paul Fracture Zone region. Mar Geophys Res 21:529–560

    Article  Google Scholar 

  • Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, MacLeod CJ, Integrated Ocean Drilling Program, Expeditions, 304/305 Science Party (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35:623–626

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Karig DE (1971) Origin and development of marginal basins in the Western Pacific. J Geophys Res 76(11):2542–2561

    Article  Google Scholar 

  • Klein EM, Langmuir CH, Staudigel H (1991) Geochemistry of basalts from the southeast Indian Ridge, 115°E–138°E. J Geophys Res 96(B2):2089–2107

    Article  Google Scholar 

  • Lin J, Morgan JP (1992) The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys Res Lett 19(1):13–16

    Article  Google Scholar 

  • Lin J, Purdy GM, Schouten H, Sempéré J-C, Zervas C (1990) Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344:627–632

    Article  Google Scholar 

  • Liu CZ, Snow JE, Hellebrand E, Brügmann G, von der Handt A, Büchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452:311–316

    Article  Google Scholar 

  • Macdonald KC, Scheirer DS, Carbotte SM (1991) Mid-ocean ridges: discontinuities, segments and giant cracks. Science 253:986–994

    Article  Google Scholar 

  • MacLeod CJ, Searle RC, Murton BJ, Casey JF, MallowsC USC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287:333–344

    Article  Google Scholar 

  • Marks KM, Vogt PR, Hall SA (1990) Residual depth anomalies and the origin of the ­Australian-Antarctic discordance zone. J Geophys Res 95(B11):17325–17337

    Article  Google Scholar 

  • Martinez F, Karsten J, Klein EM (1998) Recent kinematics and tectonics of the Chile Ridge. EOS Trans AGU 79(45), Fall meeting suppl (Abstract T12C-01)

    Google Scholar 

  • Martinez F, Okino K, Ohara Y, Reysenbach AL, Goffredi SK (2007) Back-arc basins. Oceanography 20:116–127

    Google Scholar 

  • Morgan JP, Forsyth DW (1988) Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure. J Geophys Res 93(B4):2955–2966

    Article  Google Scholar 

  • Naar DF, Hey RN (1989) Recent Pacific-Easter-Nazca plate motions. In: Sinton JM (ed) Evolution of mid ocean ridges, vol 57, Geophysical monograph series. AGU, Washington, DC, pp 9–30

    Google Scholar 

  • Niu Y, Batiza R (1993) Chemical variation trends at fast and slow spreading ridges. J Geophys Res 98(B5):7887–7902

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Ohara Y (2006) Mantle process beneath Philippine Sea back-arc spreading ridges: a synthesis of peridotite petrology and tectonics. Isl Arc 15:119–129

    Article  Google Scholar 

  • Ohara Y, Yoshida T, Kato Y, Kasuga S (2001) Giant megamullion in the Parece Vela backarc basin. Mar Geophys Res 22:47–61

    Article  Google Scholar 

  • Ohara Y, Fujioka K, Ishii T, Yurimoto H (2003a) Peridotites and gabbros from the Parece Vela backarc basin: unique tectonic window in an extinct backarc spreading ridge. Geochem Geophys Geosyst. doi:10.1029/2002GC000469

    Google Scholar 

  • Ohara Y, Okino K, Snow JE, KR03-01 Shipboard Scientific Party (2003b) Preliminary report of Kairei KR03-01 cruise: amagmatic tectonics and lithospheric composition of the Parece Vela Basin. InterRidge News 12(1):27–29

    Google Scholar 

  • Ohara Y, Okino K, Kasahara J (2007) Seismic study on oceanic core complexes in the Parece Vela backarc basin. Isl Arc 16:348–360

    Article  Google Scholar 

  • Okino K, Kasuga S, Ohara Y (1998) A new scenario of the Parece Vela Basin genesis. Mar Geophys Res 20:21–40

    Article  Google Scholar 

  • Okino K, Matsuda K, Christie D, Nogi Y, Koizumi K (2004) Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic discordance. Geochem Geophys Geosyst. doi:10.1029/2004GC000793

    Google Scholar 

  • Park C, Tamaki K, Kobayashi K (1990) Age-depth correlation of the Philippine Sea back-arc basins and other marginal basins in the world. Tectonophysics 181:351–371

    Article  Google Scholar 

  • Parmentier EM, Morgan JP (1990) Spreading rate dependence of three-dimensional structure in oceanic spreading centres. Nature 348:25–328

    Article  Google Scholar 

  • Perfit MR, Fornari DJ, Ridley WI, Kirk PD, Casey J, Kastens KA, Reynolds JR, Edwards M, Desonie D, Shuster R, Paradis S (1996) Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet Sci Lett 141:91–108

    Article  Google Scholar 

  • Pockalny RA, Fox PJ, Fornari D, Macdonald KC, Perfit MR (1997) Tectonic reconstruction of the Clipperton and Siqueiros Fracture Zones: evidence and consequences of plate motion change for the last 3 Myr. J Geophys Res 102(B2):3167–3181

    Article  Google Scholar 

  • Schilling JG, Ruppel C, Davis AN, McCully B, Tghe SA, Kingsley RH, Lin J (1995) Thermal structure of the mantle beneath the equatorial Mid-Atlantic Ridge: inference from the spatial variation of dredged basalt glass compositions. J Geophys Res 100(B6):10057–10076

    Article  Google Scholar 

  • Schulz HD, Devey CW, Pätzold J, Fischer G (1999) Geo Bremen/GPI Kiel South Atlantic 1998, Cruise No. 41. Meteor-Berichte, Universität Hamburg, 13 Feb–13 June 1998

    Google Scholar 

  • Searle RC, Keeton JA, Owens RB, White RS, Mecklenburghb R, Parsons B, Lee SM (1998) The Reykjanes Ridge: structure and tectonics of a hot-spot-influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations. Earth Planet Sci Lett 160:463–478

    Article  Google Scholar 

  • Sichel SE, Esperança S, Motoki A, Maia M, Horan MF, Szatmari P, da Costa AE, Mello SLM (2008) Geophysical and geochemical evidence for cold upper mantle beneath the Equatorial Atlantic Ocean. Revista Brasileira de Geofísica 26(1):69–86

    Article  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97(B1):197–216

    Article  Google Scholar 

  • Smith DK, Escartín J, Schouten H, Cann JR (2008) Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochem Geophys Geosyst. doi:10.1029/2007GC001699

    Google Scholar 

  • Tebbens SF, Cande SC, Kovacs L, Parra JC, LaBrecque JL, Vergara H (1997) The Chile ridge: a tectonic framework. J Geophys Res 102(B6):12035–12059

    Article  Google Scholar 

  • Tucholke BE, Lin J, Kleinrock M (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res 103(B5):9857–9866

    Article  Google Scholar 

  • Tucholke BE, Behn MD, Buck WR, Lin J (2008) Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36:455–458

    Article  Google Scholar 

  • Wendt JI, Regelous M, Niu Y, Hékinian R, Collerson KD (1999) Geochemistry of lavas from the Garrett transform fault: insight into mantle heterogeneity beneath the eastern Pacific. Earth Planet Sci Lett 173:271–284

    Article  Google Scholar 

Download references

Acknowledgments

Most of the geophysical data (including bathymetry) for the Parece Vela Basin were obtained through Japan’s legal continental shelf survey. We thank our colleagues in Continental Shelf Survey Office of the Hydrographic and Oceanographic Department of Japan for compiling these data. Most of the bottom rock samplings in the Parece Vela Basin were conducted through academic research expeditions with R/Vs Kairei, Yokosuka and Hakuho. The bathymetric data used for Fig. 3 are from the Marine Geoscience Data System (http://www.marine-geo.org/). We thank Osamu Ishizuka, Kenichiro Tani, Katsutyoshi Michibayahsi, Yumiko Harigane and Teruaki Ishii for discussion. We thank Eric Hellebrand for providing the unpublished Ascension peridotite data. We thank the helpful reviews by Hidenori Kumagai and Yildirim Dilek. We also thank Yujiro Ogawa, Yildirim Dilek, and Ryo Amma for the editorial efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Ohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohara, Y., Okino, K., Snow, J.E. (2011). Tectonics of Unusual Crustal Accretion in the Parece Vela Basin. In: Ogawa, Y., Anma, R., Dilek, Y. (eds) Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin. Modern Approaches in Solid Earth Sciences, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8885-7_7

Download citation

Publish with us

Policies and ethics