Skip to main content

The Genetics of Colorectal Cancer

  • Chapter
  • First Online:
Metastasis of Colorectal Cancer

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 14))

  • 1217 Accesses

Abstract

Colorectal cancer arises as the result of the accumulation of genetic alterations (including gene mutations and amplification) and epigenetic modifications (such as aberrant DNA methylation and chromatin modifications) that transform normal colonic epithelial cells into adenocarcinoma cells. Loss of genomic stability and the resulting genetic changes appears to be a crucial molecular and pathogenic step that occurs early in the tumourigenic process and permits a sufficient number of alterations in tumour suppressor genes and oncogenes to accumulate in a clone of cells to result in their eventual transformation into cancer. Substantial progress has been made recently concerning potential causes of chromosomal instability in colorectal cancer and in determining the effects of the various forms of genomic instability on the biological and clinical behavior of colon tumours. Furthermore, progress has been made in terms of understanding the specific signalling pathways that are frequently deregulated in colorectal cancers. Although the discovery of genes involved in colorectal cancer metastasis remains a challenge, advancements in our understanding of the molecular genetics of this process have occurred, both with traditional familial/linkage studies and also utilizing state-of-the-art genome-wide searches. The evaluation of the cause and role of the genetic events involved in colorectal cancer formation has the potential to yield more effective prevention and treatment strategies for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACVR2:

Activin receptor type II

BAX:

Bcl-2–associated X protein

BER:

Base Excision Repair

BMPs:

Bone Morphogenetic Proteins

BRAF:

V-raf murine sarcoma viral oncogene homolog B1

CCDS:

Consensus coding sequences

CDC4:

Cell division cycle 4

Cdk4:

Cyclin-dependent kinase 4

CIMP:

CpG island methylator phenotype

CIN:

Microsatellite instability

CpG:

Cytosine-phosphate-guanine

CRC:

Colorectal cancer

CtBP1:

C-terminal-binding protein 1

CTNNB1:

β-catenin encoding gene

EB1:

End binding protein

FAP:

Familial adenomatous polyposis

Fbw7:

F-box/WD repeat-containing protein 7

FOXO:

Forkhead box, sub-group O

EGFR:

Epidermal growth factor receptor

GDFs:

Growth and differentiation factors

GSK-3β:

Glycogen synthase kinase-3β

hDLG:

Homologue of Discs Large

HNPCC:

Hereditary nonpolyposis colon cancer

HR:

Hazard ratio

JPS:

Juvenile polyposis

LOH:

Loss of heterozygosity

MAP:

MYH-Associated adenomatous polyposis syndrome

MAPK:

Mitogen-activated protein kinase

MKK4/JNKK1:

Mitogen activated protein-kinase kinase-4

MSH:

Muts homolog, colon cancer, nonpolyposis type 1 (E. coli)

MLH1:

MutL homolog 1, colon cancer, nonpolyposis type 2 (MLH1)

MMR:

DNA Mismatch Repair

MRE11:

Murein formation gene cluster E

MSI:

Microsatellite instability

MSS:

Microsatellite stable

MTHF1:

Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1

MYC:

v-myc myelocytomatosis viral oncogene homolog

MYH:

MutY human homologue

MYLK2:

Myosin light-chain kinase-2

OGG1:

8-Oxoguanine DNA glycosylase

PAK4:

p21-activated kinase 4

PCNA:

Proliferating cell nuclear antigen

PDK1:

Phosphoinositide-dependent protein kinase-1

PI3K/AKT:

Phosphatidyl inositol 3 kinase/v-akt murine thymoma viral oncogene homologue 1

PMS2:

Postmeiotic segregation increased 2

PRL-3:

Metastasis-associated phosphatase of regenerating liver-3

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

PTK:

Protein tyrosine kinase

PTP:

Phosphatase

RFC:

Replication factor C

RPA:

Replication protein A

SNP:

Single nucleotide polymorphisms

SFRP:

Secreted frizzled-related protein

TCF/Lef:

T-cell factor/lymphoid enhancing factor

TGFβ:

Transforming growth factor β

TGFBR2:

TGF-β receptor type II

TP53:

Tumor protein 53

WNT:

Wingless/Wnt

References

  • Aaltonen L, Peltomaki P, Mecklin J-P, Jarvinen H, Jass J, Green J et al. (1994). Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res 54: 1645–48.

    CAS  PubMed  Google Scholar 

  • Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994). Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107: 3655–63.

    CAS  PubMed  Google Scholar 

  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT et al. (2002). Inherited variants of MYH associated with somatic G:C–>T:A mutations in colorectal tumors. Nat Genet 30: 227–32.

    Article  CAS  PubMed  Google Scholar 

  • Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP et al. (2005). SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 11: 2606–11.

    Article  CAS  PubMed  Google Scholar 

  • Alexandrow MG, Moses HL (1995). Transforming growth factor beta and cell cycle regulation. Cancer Res 55: 1452–57.

    CAS  PubMed  Google Scholar 

  • Alhopuro P, Alazzouzi H, Sammalkorpi H, Davalos V, Salovaara R, Hemminki A et al. (2005). SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res 11: 6311–16.

    Article  CAS  PubMed  Google Scholar 

  • Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF et al. (2009). American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27: 2091–96.

    Article  PubMed  Google Scholar 

  • Arai T, Akiyama Y, Okabe S, Ando M, Endo M, Yuasa Y (1998). Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Lett 122: 157–63.

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK et al. (1990). p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50: 7717–22.

    CAS  PubMed  Google Scholar 

  • Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D et al. (2008). Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 105: 3443–48.

    Article  CAS  PubMed  Google Scholar 

  • Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S et al. (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300: 949.

    Article  CAS  PubMed  Google Scholar 

  • Beach R, Chan AO, Wu TT, White JA, Morris JS, Lunagomez S et al. (2005). BRAF mutations in aberrant crypt foci and hyperplastic polyposis. Am J Pathol 166: 1069–75.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B et al. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17: 3052–65.

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS et al. (2004). Transforming Growth Factor β Receptor Type II Inactivation Promotes the Establishment and Progression of Colon Cancer. Cancer Res 64: 4687–92.

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM, Der CJ (1993). Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J 7: 750–59.

    CAS  PubMed  Google Scholar 

  • Boland CR, Sato J, Appelman HD, Bresalier RS, Feinberg AP (1995). Microallelotyping defines the sequence and tempo of allelic losses at tumour suppressor gene loci during colorectal cancer progression. Nat Med 1: 902–09.

    Article  CAS  PubMed  Google Scholar 

  • Boland C, Thibodeau S, Hamilton S, Sidransky D, Eshleman J, Burt R et al. (1998). National Cancer Institute workshop on microsatellite instability for cancer detection and familial predispostion:development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–57.

    CAS  PubMed  Google Scholar 

  • Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, Heim S (1998). Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet Cytogenet 106: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Boulay JL, Mild G, Lowy A, Reuter J, Lagrange M, Terracciano L et al. (2002). SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br J Cancer 87: 630–34.

    Article  CAS  PubMed  Google Scholar 

  • Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A et al. (2007). A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39: 1315–17.

    Article  CAS  PubMed  Google Scholar 

  • Cahill D, Lengauer C, Yu J, Riggins G, Willson J, Markowitz S et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300–03.

    Article  CAS  PubMed  Google Scholar 

  • Carethers JM, Hawn MT, Greenson JK, Hitchcock CL, Boland CR (1998). Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer [see comments]. Gastroenterology 114: 1188–95.

    Article  CAS  PubMed  Google Scholar 

  • Caspari R, Olschwang S, Friedl W, Mandl M, Boisson C, Boker T et al. (1995). Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. Hum Mol Genet 4: 337–40.

    Article  CAS  PubMed  Google Scholar 

  • Chen WD, Eshleman JR, Aminoshariae MR, Ma AH, Veloso N, Markowitz SD et al. (2000). Cytotoxicity and mutagenicity of frameshift-inducing agent ICR191 in mismatch repair-deficient colon cancer cells. J Natl Cancer Inst 92: 480–85.

    Article  CAS  PubMed  Google Scholar 

  • Chittenden TW, Howe EA, Culhane AC, Sultana R, Taylor JM, Holmes C et al. (2008). Functional classification analysis of somatically mutated genes in human breast and colorectal cancers. Genomics 91: 508–11.

    Article  CAS  PubMed  Google Scholar 

  • Chow E, Thirlwell C, Macrae F, Lipton L (2004). Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol 5: 600–06.

    Article  CAS  PubMed  Google Scholar 

  • Chung D (2000). The genetic basis of colorectal cancer:insights into critical pathways of tumorigenesis. Gastroenterology 119: 854–65.

    Article  CAS  PubMed  Google Scholar 

  • Crook S, Seth R, Jackson D, Ilyas M (2009). Concomitant mutations and splice variants in KRAS and BRAF demonstrate complex perturbation of the Ras/Raf signalling pathway in Colorectal Cancer. Gut 58: 1234–41.

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–84.

    Article  CAS  PubMed  Google Scholar 

  • Danielsen SA, Lind GE, Bjornslett M, Meling GI, Rognum TO, Heim S et al. (2008). Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instability- and TP53 mutation- status. Hum Mutat 29: E252–E62.

    Article  PubMed  Google Scholar 

  • Deacu E, Mori Y, Sato F, Yin J, Olaru A, Sterian A et al. (2004). Activin type II receptor restoration in ACVR2-deficient colon cancer cells induces transforming growth factor-beta response pathway genes. Cancer Res 64: 7690–96.

    Article  CAS  PubMed  Google Scholar 

  • de Caestecker M (2004). The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA et al. (2004). BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 10: 191–95.

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ et al. (2004). BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41: 664–68.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–74.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–25.

    Article  CAS  PubMed  Google Scholar 

  • Eppert K, Scherer S, Ozcelik H, Pirone R, Hoodless P, Kim H et al. (1996). MADR2 maps to 18q21 and encodes a TGFß-regulated MAD-related protein that is functionally mutated in colorectal cancer. Cell 86: 543–52.

    Article  CAS  PubMed  Google Scholar 

  • Eshleman J, Casey G, Kochera M, Sedwick W, Swinler S, Veigl M et al. (1998). Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17: 719–25.

    Article  CAS  PubMed  Google Scholar 

  • Eshleman J, Lang E, Bowerfind G, Parsons R, Vogelstein B, Willson J et al. (1995). Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10: 33–37.

    CAS  PubMed  Google Scholar 

  • Ewen ME, Sluss HK, Whitehouse LL, Livingston DM (1993). TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 74: 1009–20.

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Richardson BC (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6: 322–27.

    Article  CAS  PubMed  Google Scholar 

  • Fava RA, Casey TT, Wilcox J, Pelton RW, Moses HL, Nanney LB (1990). Synthesis of transforming growth factor-beta 1 by megakaryocytes and its localization to megakaryocyte and platelet alpha-granules. Blood 76: 1946–55.

    CAS  PubMed  Google Scholar 

  • Fearon E (1995). Molecular Genetics of Colorectal Cancer. Ann N Y Acad Sci 768: 101–10.

    Article  CAS  PubMed  Google Scholar 

  • Fearon E, Vogelstein B (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–67.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD (1995). A tale of four syndromes: familial adenomatous polyposis, Gardner syndrome, attenuated APC and Turcot syndrome. QJM 88: 853–63.

    CAS  PubMed  Google Scholar 

  • Friedl W, Kruse R, Uhlhaas S, Stolte M, Schartmann B, Keller KM et al. (1999). Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromos Cancer 25: 403–06.

    Article  CAS  PubMed  Google Scholar 

  • Friedl W, Uhlhaas S, Schulmann K, Stolte M, Loff S, Back W et al. (2002). Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet 111: 108–11.

    Article  CAS  PubMed  Google Scholar 

  • Fritzmann J, Morkel M, Besser D, Budczies J, Kosel F, Brembeck FH et al. (2009). A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterolology 137: 165–75.

    Article  CAS  Google Scholar 

  • Fujiwara T, Stolker JM, Watanabe T, Rashid A, Longo P, Eshleman JR et al. (1998). Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol 153: 1063–78.

    Article  CAS  PubMed  Google Scholar 

  • Furger KA, Menon RK, Tuckl AB, Bramwelll VH, Chambers AF (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1: 621–32.

    Article  CAS  PubMed  Google Scholar 

  • Fynan TM, Reiss M (1993). Resistance to inhibition of cell growth by transforming growth factor- beta and its role in oncogenesis. Crit Rev Oncog 4: 493–540.

    CAS  PubMed  Google Scholar 

  • Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L (2008). Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 180: 1087–100.

    Article  CAS  PubMed  Google Scholar 

  • Gardner RJ, Kool D, Edkins E, Walpole IR, Macrae FA, Nasioulas S et al. (1997). The clinical correlates of a 3’ truncating mutation (codons 1982–1983) in the adenomatous polyposis coli gene. Gastroenterology 113: 326–31.

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Weinberg RA (1993). Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 90: 10315–19.

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132: 127–38.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein NS (2006). Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am J Clin Pathol 125: 146–53.

    CAS  PubMed  Google Scholar 

  • Gong J, Ammanamanchi S, Ko TC, Brattain MG (2003). Transforming growth factor beta 1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells. Cancer Res 63: 3340–46.

    CAS  PubMed  Google Scholar 

  • Grady WM (2004). Genomic instability and colon cancer. Cancer Metast Rev 23: 11–27.

    Article  CAS  Google Scholar 

  • Grady WM (2005). Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans 33: 684–88.

    Article  CAS  PubMed  Google Scholar 

  • Grady WM, Markowitz SD (2008). TGF-ß signaling pathway and tumor suppression. In: Derynck R, Miyazono K (eds) The TGF-ß Family, 1st edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, pp 889–938.

    Google Scholar 

  • Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD et al. (1999). Mutational inactivation of transforming growth factor-beta receptor type II in microsatellite stable colon cancers. Cancer Res 59: 320–24.

    CAS  PubMed  Google Scholar 

  • Grady W, Rajput A, Myeroff L, Liu D, Kwon K-H, Willis J et al. (1998). Mutation of the type II transforming growth factor-ß receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 58: 3101–04.

    CAS  PubMed  Google Scholar 

  • Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Hahn S, Schutte M, Shamsul Hoque A, Moskaluk C, da Costa L, Rozenblum E et al. (1996). DPC4, a candidate tumor supressor gene at human chromosome 18q21.1. Science 271: 350–53.

    Article  CAS  PubMed  Google Scholar 

  • Halford SE, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJ et al. (2003). Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol 162: 1545–48.

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P et al. (2005). Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352: 1851–60.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hannon G, Beach D (1994). p15INK4B is a potential effector of TGF-ß-induced cell cycle arrest. Nature 371: 257–61.

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M et al. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 18: 5931–42.

    Article  CAS  PubMed  Google Scholar 

  • Harvey J (1964). An unidentified virus which causes the rapid production of tumors in mice. Nature 204: 1104–1105.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway [see comments]. Science 281: 1509–12.

    Article  CAS  PubMed  Google Scholar 

  • Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A et al. (2003). Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 63: 994–99.

    CAS  PubMed  Google Scholar 

  • Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A et al. (2002). Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123: 1109–19.

    Article  CAS  PubMed  Google Scholar 

  • Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA (1986). Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 25: 473–76.

    Article  CAS  PubMed  Google Scholar 

  • Hoosein N, McKnight M, Levine A, Mulder K, Childress K, Brattain D et al. (1989). Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-ß1. Exp Cell Res 181: 442–53.

    Article  CAS  PubMed  Google Scholar 

  • Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM et al. (2001). Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28: 184–87.

    Article  CAS  PubMed  Google Scholar 

  • Howe PH, Draetta G, Leof EB (1991). Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol 11: 1185–94.

    CAS  PubMed  Google Scholar 

  • Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P et al. (1998). Mutations in the SMAD4/DPC4 gene in juvenile polyposis [see comments]. Science 280: 1086–88.

    Article  CAS  PubMed  Google Scholar 

  • Howe JR, Shellnut J, Wagner B, Ringold JC, Sayed MG, Ahmed AF et al. (2002). Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am J Hum Genet 70: 1357–62.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Papadopoulos N, McKinley A, Farrington S, Curtis L, Wyllie A et al. (1996). APC mutations in colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci USA 93: 9049–54.

    Article  CAS  PubMed  Google Scholar 

  • Hulsken J, Birchmeier W, Behrens J (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127: 2061–69.

    Article  CAS  PubMed  Google Scholar 

  • Iacopetta B, Russo A, Bazan V, Dardanoni G, Gebbia N, Soussi T et al. (2006). Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann Oncol 17: 842–47.

    Article  CAS  PubMed  Google Scholar 

  • Ikenoue T, Hikiba Y, Kanai F, Aragaki J, Tanaka Y, Imamura J et al. (2004). Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor kappaB pathway and cellular transformation. Cancer Res 64: 3428–35.

    Article  CAS  PubMed  Google Scholar 

  • Iwakuma T, Parant JM, Fasulo M, Zwart E, Jacks T, de Vries A et al. (2004). Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice. Oncogene 23: 7644–50.

    Article  CAS  PubMed  Google Scholar 

  • Jacoby R, Marshall D, Kailas S, Schlack S, Harms B, Love R (1995). Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology 109: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313.

    Article  CAS  PubMed  Google Scholar 

  • Jass JR (2004). Hyperplastic polyps and colorectal cancer: is there a link? Clin Gastroenterol Hepatol 2: 1–8.

    Article  PubMed  Google Scholar 

  • Jen J, Kim H, Piantadosi S, Liu ZF, Levitt RC, Sistonen P et al. (1994a). Allelic loss of chromosome 18q and prognosis in colorectal cancer [see comments]. N Engl J Med 331: 213–21.

    Article  CAS  PubMed  Google Scholar 

  • Jen J, Powell SM, Papadopoulos N, Smith KJ, Hamilton SR, Vogelstein B et al. (1994b). Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54: 5523–26.

    CAS  PubMed  Google Scholar 

  • Jin T, George Fantus I, Sun J (2008). Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal 20: 1697–704.

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Spencer F, Jeang K (1998). Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Jiricny J (1998). Replication errors: cha(lle)nging the genome. EMBO J 17: 6427–36.

    Article  CAS  PubMed  Google Scholar 

  • Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD et al. (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53: 1137–44.

    Article  CAS  PubMed  Google Scholar 

  • Kane M, Loda M, Gaida G, Lipman J, Mishra R, Goldman H et al. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57: 808–11.

    CAS  PubMed  Google Scholar 

  • Kawabata M, Imamura T, Miyazono K (1998). Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9: 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi J, Kato J, Sasaki K, Fujii S, Watanabe N, Niitsu Y (1995). Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39. Mol Cell Biol 15: 1175–81.

    CAS  PubMed  Google Scholar 

  • Keeton MR, Curriden SA, van Zonneveld AJ, Loskutoff DJ (1991). Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 266: 23048–52.

    CAS  PubMed  Google Scholar 

  • Kikuchi-Yanoshita R, Konishi M, Ito S, Seki M, Tanaka K, Maeda Y et al. (1992). Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. Cancer Res 52: 3965–71.

    CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1996). Lessons from Hereditary Colorectal Cancer. Cell 87: 159–70.

    Article  CAS  PubMed  Google Scholar 

  • Kirsten W, Mayer L (1967). Morphologic responses to a murine erythroblastosis virus. J Nat Cancer Inst 39: 311–35.

    CAS  PubMed  Google Scholar 

  • Kitaeva M, Grogan L, Williams J, Dimond E, Nakahara K, Hausner P et al. (1997). Mutations in ß-catenin are uncommon in colorectal cancer occurring in occasional replication error-positive tumors. Cancer Res 57: 4478–81.

    CAS  PubMed  Google Scholar 

  • Kolodner RD, Putnam CD, Myung K (2002). Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552–57.

    Article  CAS  PubMed  Google Scholar 

  • Kolodner R, Tytell J, Schmeits J, Kane M, Gupta R, Weger J et al. (1999). Germ-line msh6 mutations in colorectal cancer families. Cancer Res 59: 5068–74.

    CAS  PubMed  Google Scholar 

  • Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y et al. (1996). Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111: 307–17.

    Article  CAS  PubMed  Google Scholar 

  • Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM et al. (1997). Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17: 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I et al. (2004). Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74: 1043–50.

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1993). Cancer. A death in the life of p53 [news; comment]. Nature 362: 786–7.

    Article  CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Olschwang S, Delattre O, Remvikos Y, Asselain B, Melot T et al. (1992). Survival and acquired genetic alterations in colorectal cancer [see comments]. Gastroenterology 102: 1136–41.

    CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler K, Vogelstein B (1998). Genetic instabilities in human cancers. Nature 396: 643–49.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–31.

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE (1992). Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci USA 89: 9210–14.

    Article  CAS  PubMed  Google Scholar 

  • Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C et al. (2003). Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 63: 7595–99.

    CAS  PubMed  Google Scholar 

  • Little MP, Vineis P, Li G (2008). A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. J Theor Biol 254: 229–38.

    Article  PubMed  Google Scholar 

  • Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK et al. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26: 146–7.

    Article  CAS  PubMed  Google Scholar 

  • Loeb KR, Kostner H, Firpo E, Norwood T, D Tsuchiya T, Clurman BE et al. (2005). A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8: 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Lothe RA, Hektoen M, Johnsen H, Meling GI, Andersen TI, Rognum TO et al. (1998). The APC gene I1307K variant is rare in Norwegian patients with familial and sporadic colorectal or breast cancer. Cancer Res 58: 2923–4.

    CAS  PubMed  Google Scholar 

  • Lubomierski N, Plotz G, Wormek M, Engels K, Kriener S, Trojan J et al. (2005). BRAF mutations in colorectal carcinoma suggest two entities of microsatellite-unstable tumors. Cancer 104: 952–61.

    Article  CAS  PubMed  Google Scholar 

  • Lynch HT, de la Chapelle A (1999). Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36: 801–18.

    CAS  PubMed  Google Scholar 

  • Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA et al. (2006). Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38: 468–73.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz S, Roberts A (1996). Tumor supressor activity of the TGF-ß pathway in human cancers. Cytokine Growth Factor Rev 7: 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al. (1995). Inactivation of the type II TGF-ß receptor in colon cancer cells with microsatellite instability. Science 268: 1336–38.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lopez E, Abad A, Font A, Monzo M, Ojanguren I, Pifarre A et al. (1998). Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer [see comments]. Gastroenterology 114: 1180–87.

    Article  CAS  PubMed  Google Scholar 

  • Massague J (1996). TGF-ß signaling: receptors, transducers, and mad proteins. Cell 85: 947–50.

    Article  CAS  PubMed  Google Scholar 

  • Midgley RS, Yanagisawa Y, Kerr DJ (2009). Evolution of nonsurgical therapy for colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 6: 108–20.

    Article  PubMed  Google Scholar 

  • Miyaki M, Iijima T, Kimura J, Yasuno M, Mori T, Hayashi Y et al. (1999). Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res 59: 4506–09.

    CAS  PubMed  Google Scholar 

  • Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K et al. (1994). Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54: 3011–20.

    CAS  PubMed  Google Scholar 

  • Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1: 229–33.

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T et al. (2004). Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36: 855–60.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Brown JD, Yang-Snyder JA, Miller JR (1997). Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88: 725–28.

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Yin J, Rashid A, Leggett BA, Young J, Simms L et al. (2001). Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res 61: 6046–49.

    CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC [see comments]. Science 275: 1787–90.

    Article  CAS  PubMed  Google Scholar 

  • Munoz N, Upton M, Rojas A, Washington M, Lin L, Chytil A et al. (2006). Transforming growth factor beta receptor type II inactivation induces transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 66: 9837–44.

    Article  CAS  PubMed  Google Scholar 

  • Myeroff L, Parsons R, Kim S-J, Hedrick L, Cho K, Orth K et al. (1995). A transforming growth factor ß receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55: 5545–47.

    CAS  PubMed  Google Scholar 

  • Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S et al. (1996). Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res 56: 2718–20.

    CAS  PubMed  Google Scholar 

  • Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665–69.

    Article  CAS  PubMed  Google Scholar 

  • Noffsinger AE (2009). Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol 4: 343–64.

    Article  CAS  PubMed  Google Scholar 

  • Ochiai A, Hirohashi S (1997). Multiple genetic alterations in gastric cancer. In: Sugimura T, Sasako M (eds.) Gastric Cancer. Oxford University Press: New York, pp. 87–99.

    Google Scholar 

  • Ohue M, Tomita N, Monden T, Fujita M, Fukunaga M, Takami K et al. (1994). A frequent alteration of p53 gene in carcinoma in adenoma of colon. Cancer Res 54: 4798–804.

    CAS  PubMed  Google Scholar 

  • Olinski R, Zastawny T, Budzbon J, Skokowski J, Zegarski W, Dizdaroglu M (1992). DNA base modifications in chromatin of human cancerous tissues. FEBS Lett 309: 193–98.

    Article  CAS  PubMed  Google Scholar 

  • Olschwang S, Hamelin R, Laurent-Puig P, Thuille B, De Rycke Y, Li YJ et al. (1997). Alternative genetic pathways in colorectal carcinogenesis. Proc Natl Acad Sci USA 94: 12122–27.

    Article  CAS  PubMed  Google Scholar 

  • Olschwang S, Tiret A, Laurent-Puig P, Muleris M, Parc R, Thomas G (1993). Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75: 959–68.

    Article  CAS  PubMed  Google Scholar 

  • Ostwald C, Linnebacher M, Weirich V, Prall F (2009). Chromosomally and microsatellite stable colorectal carcinomas without the CpG island methylator phenotype in a molecular classification. Int J Oncol 35: 321–27.

    CAS  PubMed  Google Scholar 

  • Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS et al. (1999). Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 59: 4257–60.

    CAS  PubMed  Google Scholar 

  • Park WS, Park JY, Oh RR, Yoo NJ, Lee SH, Shin MS et al. (2000). A distinct tumor suppressor gene locus on chromosome 15q21.1 in sporadic form of colorectal cancer. Cancer Res 60: 70–73.

    CAS  PubMed  Google Scholar 

  • Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW et al. (1995). Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55: 5548–50.

    CAS  PubMed  Google Scholar 

  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature 436: 792.

    Article  CAS  PubMed  Google Scholar 

  • Pasche B, Knobloch TJ, Bian Y, Liu J, Phukan S, Rosman D et al. (2005). Somatic acquisition and signaling of TGFBR1*6A in cancer. J Am Med Assoc 294: 1634–46.

    Article  CAS  Google Scholar 

  • Perez-Losada J, Mao JH, Balmain A (2005). Control of genomic instability and epithelial tumor development by the p53-Fbxw7/Cdc4 pathway. Cancer Res 65: 6488–92.

    Article  CAS  PubMed  Google Scholar 

  • Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K et al. (2009). A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 137: 623–34.

    Article  CAS  PubMed  Google Scholar 

  • Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al. (2001). The phosphatidylinositol 3’-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61: 7426–29.

    CAS  PubMed  Google Scholar 

  • Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T et al. (2009). The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 19: 987–93.

    Article  CAS  PubMed  Google Scholar 

  • Popat S, Hubner R, Houlston RS (2005). Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23: 609–18.

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Petersen GM, Krush AJ, Booker S, Jen J, Giardiello FM et al. (1993). Molecular diagnosis of familial adenomatous polyposis [see comments]. N Engl J Med 329: 1982–87.

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature 359: 235–37.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002). Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418: 934.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature 428: 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Lengauer C (2004). hCDC4 and genetic instability in cancer. Cell Cycle 3: 693–4.

    Article  CAS  PubMed  Google Scholar 

  • Riggins G, Thiagalingam S, Rozenblum E, Weinstein C, Kern S, Hamilton S et al. (1996). Mad-related genes in the human. Nat Genet 13: 347–49.

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Padidam M, Cress D, Grady WM (2009). TGF-ß receptor levels regulated the specificity of signaling pathway activation and biological effects of TGF-ß. Biochim Biophys Acta-Mol Cell Res 1793: 1165–73.

    Article  CAS  Google Scholar 

  • Rooney P, Murray G, Stevenson D, Haites N, Cassidy J, McLeod H (1999). Comparative genomic hybridization and chromosomal instability in solid tumors. Br J Cancer 80: 862–73.

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Sistonen P, Salovaara R, Hemminki A, Loukola A, Johansson M et al. (1999). SMAD genes in juvenile polyposis. Genes Chromos Cancer 26: 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Rotman G, Shiloh Y (1998). ATM:from gene to function. Human Mol Gen 7: 1555–63.

    Article  CAS  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 57: 4624–30.

    CAS  PubMed  Google Scholar 

  • Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, Croix BS et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–46.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Kitazawa R, Maeda S, Kitazawa S (2001). Methylation of CpG loci in 5’-flanking region alters steady-state expression of adenomatous polyposis coli gene in colon cancer cell lines. J Cell Biochem 80: 415–23.

    Article  CAS  PubMed  Google Scholar 

  • Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA et al. (2005). Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129: 837–45.

    Article  CAS  PubMed  Google Scholar 

  • Samowitz WS, Powers MD, Spirio LN, Nollet F, van Roy F, Slattery ML (1999). Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 59: 1442–44.

    CAS  PubMed  Google Scholar 

  • Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG et al. (2003). Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362: 39–41.

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    Article  CAS  PubMed  Google Scholar 

  • Scheele JS, Rhee JM, Boss GR (1995). Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: comparison of parental and Ras-overproducing NIH 3T3 fibroblasts. Proc Natl Acad Sci USA 92: 1097–100.

    Article  CAS  PubMed  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–23.

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Kondo Y, Hamilton SR, Rashid A, Issa JP (2003). P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology 124: 626–33.

    Article  CAS  PubMed  Google Scholar 

  • Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, Vogelstein B (2001). Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 61: 818–22.

    CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–27.

    Article  CAS  PubMed  Google Scholar 

  • Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK et al. (2003). Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348: 791–99.

    Article  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–74.

    Article  PubMed  CAS  Google Scholar 

  • Slaby O, Sobkova K, Svoboda M, Garajova I, Fabian P, Hrstka R et al. (2009). Significant overexpression of Hsp110 gene during colorectal cancer progression. Oncol Rep 21: 1235–41.

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al. (1994). Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen [see comments]. Science 266: 1376–80.

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Matthews JB, Hall RC (1998). Transforming growth factor-beta1 (TGF-beta1) in dentine matrix. Ligand activation and receptor expression. Eur J Oral Sci 106(Suppl 1): 179–84.

    CAS  PubMed  Google Scholar 

  • Somasundaram K (2000). Tumor suppressor p53: regulation and function. Front Biosci 5: D424–D37.

    Article  CAS  PubMed  Google Scholar 

  • Soravia C, Berk T, Madlensky L, Mitri A, Cheng H, Gallinger S et al. (1998). Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 62: 1290–301.

    Article  CAS  PubMed  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998). Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58: 1130–34.

    CAS  PubMed  Google Scholar 

  • Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G et al. (1993). Alleles of the APC gene: an attenuated form of familial polyposis. Cell 75: 951–57.

    Article  CAS  PubMed  Google Scholar 

  • Spirio L, Otterud B, Stauffer D, Lynch H, Lynch P, Watson P et al. (1992). Linkage of a variant or attenuated form of adenomatous polyposis coli to the adenomatous polyposis coli (APC) locus. Am J Hum Genet 51: 92–100.

    CAS  PubMed  Google Scholar 

  • Spirio LN, Samowitz W, Robertson J, Robertson M, Burt RW, Leppert M et al. (1998). Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat Genet 20: 385–88.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Dong Chen W et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–22.

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K et al. (1996). Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111: 1369–72.

    Article  CAS  PubMed  Google Scholar 

  • Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 59: 6113–17.

    CAS  PubMed  Google Scholar 

  • Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin M, Taketo M (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92: 645–56.

    Article  CAS  PubMed  Google Scholar 

  • Takenoshita S, Tani M, Mogi A, Nagashima M, Nagamachi Y, Bennett WP et al. (1998). Mutation analysis of the Smad2 gene in human colon cancers using genomic DNA and intron primers. Carcinogenesis 19: 803–07.

    Article  CAS  PubMed  Google Scholar 

  • Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N et al. (2008). Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–37.

    Article  CAS  PubMed  Google Scholar 

  • Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A et al. (2009). TGF-ss receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a ss-catenin independent pathway. Gastroenterology 136: 1680–88.

    Article  CAS  PubMed  Google Scholar 

  • Vilar E, Mukherjee B, Kuick R, Raskin L, Misek DE, Taylor JM et al. (2009). Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. Clin Cancer Res 15: 2829–39.

    CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. (1988). Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–32.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y et al. (1989). Allelotype of colorectal carcinomas. Science 244: 207–11.

    Article  CAS  PubMed  Google Scholar 

  • Wakefield LM, Roberts AB (2002). TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009). Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9: 489–99.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cummins JM, Shen D, Cahill DP, Jallepalli PV, Wang TL et al. (2004b). Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res 64: 2998–3001.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cunningham JM, Winters JL, Guenther JC, French AJ, Boardman LA et al. (2003). BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63: 5209–12.

    CAS  PubMed  Google Scholar 

  • Wang J, Sergina N, Ko TC, Gong J, Brattain MG (2004a). Autocrine and exogenous transforming growth factor beta control cell cycle inhibition through pathways with different sensitivity. J Biol Chem 279: 40237–44.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S et al. (2004c). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304: 1164–66.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG et al. (2001). Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344: 1196–206.

    Article  CAS  PubMed  Google Scholar 

  • Wong DJ, Foster SA, Galloway DA, Reid BJ (1999). Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol 19: 5642–51.

    CAS  PubMed  Google Scholar 

  • Wong P, Verselis SJ, Garber JE, Schneider K, DiGianni L, Stockwell DH et al. (2006). Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology 130: 73–79.

    Article  PubMed  Google Scholar 

  • Woodford-Richens K, Williamson J, Bevan S, Young J, Leggett B, Frayling I et al. (2000). Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res 60: 2477–82.

    CAS  PubMed  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19: 1868–74.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Sawai H, Weber T, Rodriguez-Bigas M, Perucho M (1998). Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res 58: 997–1003.

    CAS  PubMed  Google Scholar 

  • Yeatman TJ, Chambers AF (2003). Osteopontin and colon cancer progression. Clin Exp Metast 20: 85–90.

    Article  CAS  Google Scholar 

  • Zhang H, Tombline G, Weber B (1998). BRCA1, BRCA2, and DNA damage reponse: collision or collusion. Cell 92: 433–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (1999). Transforming growth factor-beta (TGF-beta) type I and type II receptors are both required for TGF-beta-mediated extracellular matrix production in lung fibroblasts. Mol Cell Endocrinol 150: 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Goodman SN, Galizia G, Lieto E, Ferraraccio F, Pignatelli C et al. (2002). Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet 359: 219–25.

    Article  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo W-l, Gray J, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaz, A.M., Grady, W.M. (2010). The Genetics of Colorectal Cancer. In: Beauchemin, N., Huot, J. (eds) Metastasis of Colorectal Cancer. Cancer Metastasis - Biology and Treatment, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8833-8_3

Download citation

Publish with us

Policies and ethics