Skip to main content

The Metastatic Process: An Overview

  • Chapter
  • First Online:
Metastasis of Colorectal Cancer

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 14))

Abstract

About one third of patients who will receive a cancer diagnostic will die of this disease. In most cases, death results from the formation of secondary neoplasms called metastases. The metastatic process is characterized by the detachment of cancer cells from the primary sites followed by their dissemination throughout the bloodstream and/or lymph stream to distal sites where they proliferate to give rise to secondary tumours. Intriguingly, the metastatic process is rather inefficient and in spite of its clinical significance, it remains poorly understood. Nevertheless, significant progress has been achieved during the past years and the increasing knowledge of the metastatic process is encouraging and raises high therapeutic expectations. Several events that lead to cancer and metastasis are under genetic and epigenetic controls. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and to a propensity to detach and progress through the subsequent steps of metastatic dissemination. Epigenetic alterations are mainly characterized by deregulation of DNA methylation and microRNA (miRNA)-dependent functions, as well as disruption of histone modifiers and chromatin-remodelling factors. In addition to these molecular alterations, several studies highlight that tumour development and dissemination rely on a continuous crosstalk between cancer cells and their microenvironments. This chapter will provide an overview of the metastatic process as it applies to colorectal cancer.

Nicolas Porquet and Stéphanie Gout contributed equally to this review

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

Akt:

v-akt murine thymoma viral oncogene homologue 1

BDMC:

Bone marrow-derived cells

bFGF:

Basic fibroblast growth factor

BM:

Basement membrane

CAFs:

Cancer-associated fibroblasts

COX2:

Cyclooxygenase 2

CpG:

Cytosine-phosphate-guanine

CXC:

Chemokine C-X-C motif

CXCL:

Chemokine ligand

CXCR:

Chemokine C-X-C motif receptor

DR3:

Death receptor-3

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ERK:

Extracellular-signal regulated kinase

eNOS:

Endothelial nitric oxide synthase

FAK:

Focal adhesion kinase

HGF:

Hepatocyte growth factor

HIF1α:

Hypoxia-inducible factor-1α

ICAM-1:

Intercellular adhesion molecule-1

IGF1/2:

Insulin-like growth factor-1/2

IL-3:

Interleukin-3

MAPK:

Mitogen-activated protein kinase

MACC1:

Metastasis-associated colon cancer 1

MET:

Mesenchymal-epithelial transition

miRNA:

microRNA

MMP:

Matrix metalloprotease

NK cells:

Natural killer cells

PCC:

Premature chromosome condensation

PDGFR:

Platelet-derived growth factor receptor

PI3K:

Phosphatidyl inositol 3 kinase

PLGF:

Placental growth factor

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

p38 MAPK:

p38 mitogen-activated protein kinase

ROS:

Reactive oxygen species

TAMs:

Tumour-associated macrophages

TIMP:

Tissue inhibitors of metalloprotease

TGFα:

Transforming growth factor-α

uPA:

Urokinase plasminogen activator

uPAR:

uPA receptor

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial cell growth factor

VEGFR:

Vascular endothelial cell growth factor receptor

References

  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10: 619–24.

    Article  PubMed  CAS  Google Scholar 

  • Allgayer H, Wang H, Gallick GE, Crabtree A, Mazar A, Jones T et al. (1999). Transcriptional induction of the urokinase receptor gene by a constitutively active Src. Requirement of an upstream motif (-152/-135) bound with Sp1. J Biol Chem 274: 18428–37.

    Article  PubMed  CAS  Google Scholar 

  • Allin KH, Bojesen SE, Nordestgaard BG (2009). Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol 27: 2217–24.

    Article  PubMed  CAS  Google Scholar 

  • Araki M, Araki K, Biancone L, Stamenkovic I, Izui S, Yamamura K et al. (1997). The role of E-selectin for neutrophil activation and tumor metastasis in vivo. Leukemia 11(Suppl 3 ): 209–12.

    PubMed  Google Scholar 

  • Atkin NB (1979). Premature chromosome condensation in carcinoma of the bladder: presumptive evidence for fusion of normal and malignant cells. Cytogenet Cell Genet 23: 217–19.

    Article  PubMed  CAS  Google Scholar 

  • Avizienyte E, Fincham VJ, Brunton VG, Frame MC (2004). Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15: 2794–803.

    Article  PubMed  CAS  Google Scholar 

  • Bacac M, Stamenkovic I (2008). Metastatic cancer cell. Annu Rev Pathol 3: 221–47.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–17.

    Article  PubMed  CAS  Google Scholar 

  • Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ et al. (2007). Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14: 234–39.

    Article  PubMed  CAS  Google Scholar 

  • Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002). Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62: 7042–49.

    PubMed  CAS  Google Scholar 

  • Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H et al. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 115: 339–47.

    PubMed  CAS  Google Scholar 

  • Bates RC, DeLeo MJ 3rd, Mercurio AM (2004). The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 299: 315–24.

    Article  PubMed  CAS  Google Scholar 

  • Bates RC, Mercurio AM (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14: 1790–800.

    Article  PubMed  CAS  Google Scholar 

  • Bates RC, Mercurio AM (2005). The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4: 365–70.

    Article  PubMed  CAS  Google Scholar 

  • Bates RC, Pursell BM, Mercurio AM (2007). Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185: 29–39.

    Article  PubMed  Google Scholar 

  • Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P et al. (2006). Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 25: 6959–67.

    Article  PubMed  CAS  Google Scholar 

  • Bendich A, Wilczok T, Borenfreund E (1965). Circulating DNA as a possible factor in oncogenesis. Science 148: 374–76.

    Article  PubMed  CAS  Google Scholar 

  • Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H (2004). Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 14: 131–36.

    Article  PubMed  CAS  Google Scholar 

  • Bockhorn M, Jain RK, Munn LL (2007). Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8: 444–48.

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98: 10356–61.

    Article  PubMed  CAS  Google Scholar 

  • Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC et al. (2000). Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60: 2541–46.

    PubMed  CAS  Google Scholar 

  • Cao Z, Song JH, Park YK, Maeng EJ, Nam SW, Lee JY et al. (2009). The p53 codon 72 polymorphism and susceptibility to colorectal cancer in Korean patients. Neoplasma 56: 114–18.

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro U, Christofori G (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–32.

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC (2001). Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10: 243–55, vii.

    PubMed  CAS  Google Scholar 

  • Chen CN, Cheng YM, Liang JT, Lee PH, Hsieh FJ, Yuan RH et al. (2000). Color Doppler vascularity index can predict distant metastasis and survival in colon cancer patients. Cancer Res 60: 2892–97.

    PubMed  CAS  Google Scholar 

  • Decock J, Paridaens R, Ye S (2008). Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet 73: 197–211.

    Article  PubMed  CAS  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006). Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6: 24–37.

    Article  PubMed  CAS  Google Scholar 

  • Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD (2008). Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci U S A 105: 14867–72.

    Article  PubMed  CAS  Google Scholar 

  • Edmiston KH, Shoji Y, Mizoi T, Ford R, Nachman A, Jessup JM (1998). Role of nitric oxide and superoxide anion in elimination of low metastatic human colorectal carcinomas by unstimulated hepatic sinusoidal endothelial cells. Cancer Res 58: 1524–31.

    PubMed  CAS  Google Scholar 

  • Elander N, Soderkvist P, Fransen K (2006). Matrix metalloproteinase (MMP) -1, -2, -3 and -9 promoter polymorphisms in colorectal cancer. Anticancer Res 26: 791–95.

    PubMed  CAS  Google Scholar 

  • Ellis LM, Haller DG (2008). Bevacizumab beyond progression: does this make sense? J Clin Oncol 26: 5313–15.

    Article  PubMed  Google Scholar 

  • Ellis LM, Hicklin DJ (2008). Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res 14: 6371–75.

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA et al. (2009). A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis 26: 205–13.

    Article  PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222–26.

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008). Epigenetics in cancer. N Engl J Med 358: 1148–59.

    Article  PubMed  CAS  Google Scholar 

  • Ewing J (1928). Neoplastic Diseases. A Treatise on Tumors, 3rd edn. WB Saunders Company: Philadelphia, p. 1127.

    Google Scholar 

  • Fidler IJ (1996). Critical determinants of melanoma metastasis. J Investig Dermatol Symp Proc 1: 203–8.

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Kripke ML (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197: 893–95.

    Article  PubMed  CAS  Google Scholar 

  • Frost P, Kerbel RS, Hunt B, Man S, Pathak S (1987). Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2’-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Res 47: 2690–95.

    PubMed  CAS  Google Scholar 

  • Garcia-Olmo D, Garcia-Olmo DC (2001). Functionality of circulating DNA: the hypothesis of genometastasis. Ann N Y Acad Sci 945: 265–75.

    Article  PubMed  CAS  Google Scholar 

  • Gassmann P, Haier J (2008). The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 25: 171–81.

    Article  PubMed  CAS  Google Scholar 

  • Goh V, Padhani AR, Rasheed S (2007). Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8: 245–55.

    Article  PubMed  Google Scholar 

  • Gort EH, Groot AJ, van der Wall E, van Diest PJ, Vooijs MA (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Curr Mol Med 8: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Gout S, Huot J (2008). Role of cancer microenvironmentin metastasis: focus on colon cancer. Cancer Microenviron 1: 69–83.

    Article  PubMed  CAS  Google Scholar 

  • Gout S, Morin C, Houle F, Huot J (2006). Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res 66: 9117–24.

    Article  PubMed  CAS  Google Scholar 

  • Gout S, Tremblay PL, Huot J (2008). Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis 25: 335–44.

    Article  PubMed  CAS  Google Scholar 

  • Grady WM, Carethers JM (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135: 1079–99.

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008). The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47: 939–46.

    Article  PubMed  CAS  Google Scholar 

  • Guy CT, Cardiff RD, Muller WJ (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12: 954–61.

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Handsley MM, Edwards DR (2005). Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115: 849–60.

    Article  PubMed  CAS  Google Scholar 

  • Harris JF, Chambers AF, Hill RP, Ling V (1982). Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proc Natl Acad Sci U S A 79: 5547–51.

    Article  PubMed  CAS  Google Scholar 

  • Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148: 779–90.

    Article  PubMed  CAS  Google Scholar 

  • Ho-Tin-Noe B, Goerge T, Wagner DD (2009). Platelets: guardians of tumor vasculature. Cancer Res 69: 5623–26.

    Article  PubMed  CAS  Google Scholar 

  • Honn KV, Tang DG, Grossi I, Duniec ZM, Timar J, Renaud C et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Res 54: 565–74.

    PubMed  CAS  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213: 374–83.

    Article  PubMed  CAS  Google Scholar 

  • Hunter KW, Crawford NP, Alsarraj J (2008). Mechanisms of metastasis. Breast Cancer Res 10(Suppl 1): S2.

    Article  PubMed  Google Scholar 

  • Iravani S, Mao W, Fu L, Karl R, Yeatman T, Jove R et al. (1998). Elevated c-Src protein expression is an early event in colonic neoplasia. Lab Invest 78: 365–71.

    PubMed  CAS  Google Scholar 

  • Joyce T, Cantarella D, Isella C, Medico E, Pintzas A (2009). A molecular signature for Epithelial to Mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin Exp Metastasis 26: 569–87.

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer 9: 239–52.

    Article  PubMed  CAS  Google Scholar 

  • Juliano RL (2002). Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42: 283–323.

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006). Fibroblasts in cancer. Nat Rev Cancer 6: 392–401.

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–49.

    Article  PubMed  CAS  Google Scholar 

  • Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N (2004). Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95: 377–84.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006). Preparing the “soil”: the premetastatic niche. Cancer Res 66: 11089–93.

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Makinen T, Alitalo K (2002). Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 4: E.

    Article  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2: 727–39.

    Article  PubMed  CAS  Google Scholar 

  • Khalique L, Ayhan A, Whittaker JC, Singh N, Jacobs IJ, Gayther SA et al. (2009). The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int J Cancer 124: 1579–86.

    Article  PubMed  CAS  Google Scholar 

  • Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M et al. (2005). Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167: 749–59.

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Borsig L, Han HL, Varki NM, Varki A (1999). Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol 155: 461–72.

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000). In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A 97: 2731–36.

    Article  PubMed  CAS  Google Scholar 

  • Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana CD, Fidler IJ (2006). Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169: 2054–65.

    Article  PubMed  CAS  Google Scholar 

  • Klein CA (2009). Parallel progression of primary tumours and metastases. Nat Rev Cancer 9: 302–12.

    Article  PubMed  CAS  Google Scholar 

  • Kramer SA, Farnham R, Glenn JF, Paulson DF (1981). Comparative morphology of primary and secondary deposits of prostatic adenocarcinoma. Cancer 48: 271–73.

    Article  PubMed  CAS  Google Scholar 

  • Lamalice L, Le Boeuf F, Huot J (2007). Endothelial cell migration during angiogenesis. Circ Res 100: 782–94.

    Article  PubMed  CAS  Google Scholar 

  • Le NH, Franken P, Fodde R (2008). Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer 98: 1886–93.

    Article  PubMed  CAS  Google Scholar 

  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977). Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37: 646–50.

    PubMed  CAS  Google Scholar 

  • Leupold JH, Asangani I, Maurer GD, Lengyel E, Post S, Allgayer H (2007). Src induces urokinase receptor gene expression and invasion/intravasation via activator protein-1/p-c-Jun in colorectal cancer. Mol Cancer Res 5: 485–96.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Fan X, Houghton J (2007). Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101: 805–15.

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Johnson RS (2007). Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26: 281–90.

    Article  PubMed  CAS  Google Scholar 

  • Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al. (1998). Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77: 640–44.

    Article  PubMed  CAS  Google Scholar 

  • Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F et al. (1997). Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J Cell Biol 139: 1337–48.

    Article  PubMed  CAS  Google Scholar 

  • Lujambio A, Esteller M (2009). How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 8: 377–82.

    Article  PubMed  CAS  Google Scholar 

  • Lunt SJ, Chaudary N, Hill RP (2009). The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26: 19–34.

    Article  PubMed  Google Scholar 

  • Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: 865–73.

    Article  PubMed  CAS  Google Scholar 

  • Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11: 162–71.

    Article  PubMed  CAS  Google Scholar 

  • Malmberg KJ, Ljunggren HG (2006). Escape from immune- and nonimmune-mediated tumor surveillance. Semin Cancer Biol 16: 16–31.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008). Cancer-related inflammation. Nature 454: 436–44.

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2008). TGFbeta in Cancer. Cell 134: 215–30.

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Puisieux A (2006). Metastasis: a question of life or death. Nat Rev Cancer 6: 449–58.

    Article  PubMed  CAS  Google Scholar 

  • Meijer J, Zeelenberg IS, Sipos B, Roos E (2006). The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res 66: 9576–82.

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Zajgla J, Del Pozo L, Ceballos G, Maldonado V (2008). Tissue inhibitor of metalloproteinases-4. The road less traveled. Mol Cancer 7: 85.

    Article  PubMed  Google Scholar 

  • Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25: 305–24.

    Article  PubMed  CAS  Google Scholar 

  • Minard ME, Ellis LM, Gallick GE (2006). Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastasis 23: 301–13.

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X et al. (2005). Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11: 992–97.

    PubMed  CAS  Google Scholar 

  • Mizukami Y, Kohgo Y, Chung DC (2007). Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13: 5670–74.

    Article  PubMed  CAS  Google Scholar 

  • Mook OR, Frederiks WM, Van Noorden CJ (2004). The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705: 69–89.

    PubMed  CAS  Google Scholar 

  • Morse M, Langer L, Starodub A, Hobeika A, Clay T, Lyerly HK (2007). Current immunotherapeutic strategies in colon cancer. Surg Oncol Clin N Am 16: 873–900.

    Article  PubMed  Google Scholar 

  • Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S et al. (2007a). Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171: 1608–18.

    Article  PubMed  CAS  Google Scholar 

  • Mueller L, Goumas FA, Himpel S, Brilloff S, Rogiers X, Broering DC (2007b). Imatinib mesylate inhibits proliferation and modulates cytokine expression of human cancer-associated stromal fibroblasts from colorectal metastases. Cancer Lett 250: 329–38.

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8: 618–31.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW Jr., de la Chapelle A et al. (2004). Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 23: 7366–77.

    Article  PubMed  CAS  Google Scholar 

  • Narita T, Kawakami-Kimura N, Kasai Y, Hosono J, Nakashio T, Matsuura N et al. (1996). Induction of E-selectin expression on vascular endothelium by digestive system cancer cells. J Gastroenterol 31: 299–301.

    Article  PubMed  CAS  Google Scholar 

  • Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al. (2002). Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62: 2162–68.

    PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9: 274–84.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson GL (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948: 175–224.

    PubMed  CAS  Google Scholar 

  • Nieswandt B, Hafner M, Echtenacher B, Mannel DN (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59: 1295–300.

    PubMed  CAS  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 5002–11.

    PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S (2008). Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L et al. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55: 2752–55.

    PubMed  CAS  Google Scholar 

  • Paget D (1889). The distribution of secondary growths in cancer of the breast. Lancet 1: 571–73.

    Article  Google Scholar 

  • Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 110: 133–41.

    Article  PubMed  CAS  Google Scholar 

  • Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, Pharoah P et al. (2005). Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37: 1055–62.

    Article  PubMed  CAS  Google Scholar 

  • Pawelek JM, Chakraborty AK (2008). The cancer cell–leukocyte fusion theory of metastasis. Adv Cancer Res 101: 397–444.

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Weinberg RA (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–73.

    Article  PubMed  CAS  Google Scholar 

  • Popovic ZV, Sandhoff R, Sijmonsma TP, Kaden S, Jennemann R, Kiss E et al. (2007). Sulfated glycosphingolipid as mediator of phagocytosis: SM4 s enhances apoptotic cell clearance and modulates macrophage activity. J Immunol 179: 6770–82.

    PubMed  CAS  Google Scholar 

  • Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K (1995). Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132–39.

    PubMed  CAS  Google Scholar 

  • Rabinovitz I, Mercurio AM (1997). The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139: 1873–84.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky R (1995). Molecular mechanisms for organ-specific colon carcinoma metastasis. Eur J Cancer 31A: 1091–95.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky R, Ellis LM (1996). Molecular determinants in the biology of liver metastasis. Surg Oncol Clin N Am 5: 215–29.

    PubMed  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES, Golub TR (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Mangialardi G, Vacca A (2006). Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med 6: 145–49.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA (2001). Progress in human tumour immunology and immunotherapy. Nature 411: 380–84.

    Article  PubMed  CAS  Google Scholar 

  • Samak R, Israel L (1982). [Extraction and identification of circulating immune complexes from the serum of cancer patient by affinity chromatography followed by high pressure steric exclusion chromatography. Demonstration of their effect on the mitogenesis of normal lymphocytes]. Ann Med Interne (Paris) 133: 362–66.

    CAS  Google Scholar 

  • Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A et al. (2004). NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200: 1325–35.

    Article  PubMed  CAS  Google Scholar 

  • Solinas G, Garlanda MF, Mantovani A, Allavena P (2010). Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev DOI 10.1007/s10555-010-9227-2

    Google Scholar 

  • Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I et al. (2009). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 15: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam V, Gardner H, Jothy S (2007). Soluble CD44 secretion contributes to the acquisition of aggressive tumor phenotype in human colon cancer cells. Exp Mol Pathol 83: 341–46.

    Article  PubMed  CAS  Google Scholar 

  • Sundar SS, Ganesan TS (2007). Role of lymphangiogenesis in cancer. J Clin Oncol 25: 4298–307.

    Article  PubMed  CAS  Google Scholar 

  • Sundlisaeter E, Dicko A, Sakariassen PO, Sondenaa K, Enger PO, Bjerkvig R (2007). Lymphangiogenesis in colorectal cancer–prognostic and therapeutic aspects. Int J Cancer 121: 1401–9.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Mose ES, Montel V, Tarin D (2006). Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169: 673–81.

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H et al. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214: 194–200.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE, Donkor M, Scholar E (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26: 373–400.

    Article  PubMed  Google Scholar 

  • Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008). Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27: 67–73.

    Article  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–42.

    Article  PubMed  CAS  Google Scholar 

  • Tischoff I, Tannapfel A (2008). [Epigenetic alterations in colorectal carcinomas and precancerous lesions]. Z Gastroenterol 46: 1202–6.

    Article  PubMed  CAS  Google Scholar 

  • Trainer DL, Kline T, Hensler G, Greig R, Poste G (1988). Clonal analysis of the malignant properties of B16 melanoma cells treated with the DNA hypomethylating agent 5-azacytidine. Clin Exp Metastasis 6: 185–200.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay PL, Auger FA, Huot J (2006). Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene 25: 6563–73.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay PL, Huot J, Auger FA (2008). Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68: 5167–76.

    Article  PubMed  CAS  Google Scholar 

  • Vernon AE, Bakewell SJ, Chodosh LA (2007). Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 8: 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Walzog B, Gaehtgens P (2000). Adhesion molecules: the path to a new understanding of acute inflammation. News Physiol Sci 15: 107–13.

    PubMed  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–79.

    PubMed  CAS  Google Scholar 

  • Weiss L (1990). Metastatic inefficiency. Adv Cancer Res 54: 159–211.

    Article  PubMed  CAS  Google Scholar 

  • Weiss L, Nannmark U, Johansson BR, Bagge U (1992). Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis. Int J Cancer 50: 103–7.

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G et al. (2001). Apoptosis: an early event in metastatic inefficiency. Cancer Res 61: 333–38.

    PubMed  CAS  Google Scholar 

  • Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000). A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60: 2504–11.

    PubMed  CAS  Google Scholar 

  • Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2005). Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22: 593–603.

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Pursell B, Lu S, Chang TK, Mercurio AM (2009). Regulation of {beta}4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 122: 2473–80.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–29.

    Article  PubMed  CAS  Google Scholar 

  • Yates CC, Shepard CR, Stolz DB, Wells A (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 96: 1246–52.

    Article  PubMed  CAS  Google Scholar 

  • Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003). The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63: 3833–39.

    PubMed  CAS  Google Scholar 

  • Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007). Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67: 10123–28.

    Article  PubMed  CAS  Google Scholar 

  • Zeng Q, Chen S, You Z, Yang F, Carey TE, Saims D et al. (2002). Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J Biol Chem 277: 25203–8.

    Article  PubMed  CAS  Google Scholar 

  • Zvibel I, Halpern Z, Papa M (1998). Extracellular matrix modulates expression of growth factors and growth-factor receptors in liver-colonizing colon-cancer cell lines. Int J Cancer 77: 295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this chapter was supported by the Canadian Cancer Society Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Porquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Porquet, N., Gout, S., Huot, J. (2010). The Metastatic Process: An Overview. In: Beauchemin, N., Huot, J. (eds) Metastasis of Colorectal Cancer. Cancer Metastasis - Biology and Treatment, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8833-8_1

Download citation

Publish with us

Policies and ethics