Skip to main content

The Optics of Bruising

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Forensic medicine is a field of medicine where technology plays an increasingly important role in securing and evaluating evidence in, for example, child abuse cases and cases of domestic violence. Methods from chemistry and biological sciences have found a wide application within forensic medicine. Optical technologies like microscopy are also widely used. Despite this, in vivo or post mortem optical diagnostics by spectroscopy have traditionally not had an important role in clinical or forensic examinations. Forensic medical optics as a field might include all kinds of optical analysis for use within forensic science. This includes everything from microscopic techniques to methods for examination of evidence from a crime scene. This chapter will, however, focus on the use of optical diagnostics for examining skin, with a focus on identification, characterization and age determination of minor traumatic injuries like skin bruises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois NE and Gresham GA. The ageing of bruises: a review and study of the colour changes with time. Forensic Sci. Int., 50(2):227–238 (1991).

    Article  Google Scholar 

  2. Schwart AJ and Ricci LR. How accurately can bruises be aged in abused children? Literature review and synthesis. Pediatrics, 97(2):254–257 (1996).

    Google Scholar 

  3. Stephenson T and Bialas Y. Estimation of the age of bruising. Arch. Dis. Child., 74(1):53–55 (1996).

    Article  Google Scholar 

  4. Altemeier WA 3rd. A pediatrician’s view. Interpreting bruises in children. Pediatr. Ann., 30(9):517–518, 520 (2001).

    Google Scholar 

  5. Maguire S, Mann MK, Sibert J, and Kemp A. Can you age bruises accurately in children? A systematic review. Arch. Dis. Child., 90(2):187–189 (2005).

    Article  Google Scholar 

  6. Hughes VK, Ellis PS, and Langlois NE. The perception of yellow in bruises. J. Clin. Forensic Med., 11(5):257–259 (2004).

    Article  Google Scholar 

  7. Munang LA, Leonard PA, and Mok JYQ. Lack of agreement on colour description between clinicians examining childhood bruising. J. Clin. Forensic Med., 9(4):171–174 (2002).

    Article  Google Scholar 

  8. Randeberg LL, Haugen OA, Haaverstad R, and Svaasand LO. A novel approach to age determination of traumatic injuries by reflectance spectroscopy. Lasers Surg. Med., 38(4):277–289 (2006).

    Article  Google Scholar 

  9. Sandby-Moller J, Poulsen T, and Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol., 83(6):410–413 (2003).

    Article  Google Scholar 

  10. Capper C. The language of forensic medicine: The meaning of some terms employed. Med. Sci. Law, 41(3):256–259 (2001).

    Google Scholar 

  11. Vanezis P. Interpreting bruises at necropsy. J. Clin. Pathol., 54(5):348–355 (2001).

    Article  Google Scholar 

  12. Bohnert M, Baumgartner R, and Pollak S. Spectrophotometric evaluation of the colour of intra- and subcutaneous bruises. Int. J. Legal Med., 113(6):343–348 (2000).

    Article  Google Scholar 

  13. Svaasand LO, Norvang LT, Fiskerstrand EJ, Stopps EKS, Berns MW, and Nelson JS. Tissue parameters determining the visual appearance of normal skin and port-wine stains. Lasers Med. Sci., 10(1):55–65 (1995).

    Article  Google Scholar 

  14. Bauer D, Grebe R, and Ehrlacher A. A three-layer continuous model of porous media to describe the first phase of skin irritation. J. Theor. Biol., 232(3):347–362 (2005).

    Article  MathSciNet  Google Scholar 

  15. Bauer D, Grebe R, and Ehrlacher A. First phase microcirculatory reaction to mechanical skin irritation: a three layer model of a compliant vascular tree. J. Theor. Biol., 232(2):249–260 (2005).

    Article  MathSciNet  Google Scholar 

  16. Szczesny, G, Viehelmann, A, Nolte D, and Messmer K. Changes in the local blood and lymph microcirculation in response to direct mechanical trauma applied to leg: In vivo study in an animal model. J. Trauma, 51(3):508–517 (2001).

    Article  Google Scholar 

  17. Gemsa D and Schmid R. Haemoglobin degradation and bilirubin formation. Klin Wochenschr, 52(13):609–616 (1974).

    Article  Google Scholar 

  18. Pimstone NR, Tenhunen R, Seitz PT, Marver HS, and Schmid R. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J. Exp. Med., 133(6):1264–1281 (1971).

    Article  Google Scholar 

  19. Hughes VK, Ellis PS, Burt T, and Langlois NEI. The practical application of reflectance spectrophotometry for the demonstration of haemoglobin and its degradation in bruises. J. Clin. Pathol., 57(4):355–359 (2004).

    Article  Google Scholar 

  20. Maines MD and Cohn J. Bile pigment formation by skin heme oxygenase: studies on the response of the enzyme to heme compounds and tissue injury. J. Exp. Med., 145(4):1054–1059 (1977).

    Article  Google Scholar 

  21. Custer G, Balcerzak S, and Rinehart J. Human macrophage hemoglobin-iron metabolism in vitro. Am. J. Hematol., 13(1):23–36 (1982).

    Article  Google Scholar 

  22. Thornton RN and Jolly RD. The objective interpretation of histopathological data: an application to the ageing of ovine bruises. Forensic Sci. Int., 31(4):225–239 (1986).

    Article  Google Scholar 

  23. Randeberg LL, Winnem AM, Blindheim S, Haugen OA, and Svaasand LO. Optical classification of bruises. Proc. SPIE, 5312:53–64 (2004).

    ADS  Google Scholar 

  24. Betz P. Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int. J. Legal Med., 107(2):60–68 (1994).

    Article  MathSciNet  Google Scholar 

  25. Betz P and Eisenmenger W. Morphometrical analysis of hemosiderin deposits in relation to wound age. Int. J. Legal Med., 108(5):262–264 (1996).

    Article  Google Scholar 

  26. Langlois NEI. The science behind the quest to determine the age of bruises—a review of the English language literature. Forensic Sci. Med. Pathol., 3:241–251 (2007).

    Article  Google Scholar 

  27. Zijlstra WG, Buursma A, and Van Assendelft OW. Visible and near infrared absorption spectra of human and animal haemoglobin. VSP Books, Utrecht (2000).

    Google Scholar 

  28. Du H, Fuh RA, Li J, Corkan A, and Lindsey JS. PhotochemCAD++: A computer-aided design and research tool in photochemistry. Photochem. Photobiol., 68(2):141–142 (1998).

    Google Scholar 

  29. Randeberg LL. Diagnostic applications of diffuse reflectance spectroscopy. Doctoral theses at NTNU 2005:100. Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Trondheim (2005).

    Google Scholar 

  30. Randeberg LL, Winnem AM, Langlois NE, Larsen ELP, Haaverstad R, Skallerud B, Haugen OA, and Svaasand LO. Skin changes following minor trauma. Lasers Surg. Med., 39(5):403–413 (2007).

    Article  Google Scholar 

  31. Virchow, R. Die pathologischen Pigmente. Virchows Arch. Pathol. Anat., 1:379–486 (1847).

    Article  Google Scholar 

  32. Wilson EF. Estimations of the age of cutaneous contusions in child abuse. Pediatrics, 60(5):750–752 (1977).

    Google Scholar 

  33. Trujillo O, Vanezis P, and Cermignani M. Photometric assessment of skin colour and lightness using a tristimulus colorimeter: Reliability of inter and intra-investigator observations in healthy adult volunteers. Forensic Sci. Int., 81(1):1–10 (1996).

    Article  Google Scholar 

  34. Yajima Y and Funayama M. Spectrophotometric and tristimulus analysis of the colors of subcutaneous bleeding in living persons. Forensic Sci. Int., 156(2–3):131–137 (2006).

    Article  Google Scholar 

  35. Randeberg LL, Larsen ELP, and Svaasand LO. Optical classification of bruises. In Progress in biomedical optics and imaging – proceedings of SPIE. San Jose, CA (2004).

    Google Scholar 

  36. Svaasand LO, Fiskerstrand EJ, Kopstad G, Norvang LT, Svaasand EK, Nelson JA, and Berns MW. Therapeutic response during pulsed laser treatment of port-wine stains: Dependence on vessel diameter and depth in dermis. Lasers Med. Sci., 10(4):235–243 (1995).

    Article  Google Scholar 

  37. Cremer RJ, Perryman PW, and Richards DH, Influence of light on the hyperbilirubinemia of infants. Lancet, 1:1094–1097 (1958).

    Article  Google Scholar 

  38. McDonagh AF and Lightner DA. ‘Like a shrivelled blood orange’ – bilirubin, jaundice, and phototherapy. Pediatrics, 75(3):443–455 (1985).

    Google Scholar 

  39. Kienle A, Lilge L, Vitkin IA, Patterson MS, Wilson BC, Hibst R, Steiner R. Why do veins appear blue? A new look at an old question. App. Opt. 35:1151–1160 (1996).

    Article  ADS  Google Scholar 

  40. Colorimetry. 2nd ed. Publication CIE 15.2., Vienna. 74 s (1986).

    Google Scholar 

  41. Bohnert M, Weinmann W, and S. Pollak S. Spectrophotometric evaluation of postmortem lividity. Forensic Sci. Int., 99(2):149–158 (1999).

    Article  Google Scholar 

  42. Yajima Y, Nata M, and Funayama M. Spectrophotometric and tristimulus analysis of the colors of subcutaneous bleeding in living persons. Leg. Med. (Tokyo), 5(Suppl 1): S342–S343 (2003).

    Google Scholar 

  43. Klein A, et al. Determining times of haematomas in living humans by means of spectroreflectometric measurements (in German). Beitr-Gerichtl-Med., 50:235–240 (1992).

    ADS  Google Scholar 

  44. Stamatas GN and Kollias N. Blood stasis contributions to the perception of skin pigmentation. J. Biomed. Opt., 9(2):315–322 (2004).

    Article  ADS  Google Scholar 

  45. Wu JZ, Dong RG, Smutz WP, and Schopper AW. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Biomed. Mater. Eng., 13(4):373–385 (2003).

    Google Scholar 

  46. Mow VC, Kuei SC, Lai WM, and Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng., 102(1):73–84 (1980).

    Article  Google Scholar 

  47. Oomens CW, van Campen DH, and Grootenboer HG. A mixture approach to the mechanics of skin. J. Biomech., 20(9):877–885 (1987).

    Article  Google Scholar 

  48. Winnem AM, Randeberg LL, Larsen ELP, Lilledahl MB, Haaverstad R, Haugen OA, Skallerud B, and Svaasand LO. Biomechanical characterization of soft tissue injuries. In: Progress in biomedical optics and imaging, Proceedings of SPIE. San Jose, CA (2007).

    Google Scholar 

  49. Zakaria EL, Lofthouse J, and Flessner MF. In vivo hydraulic conductivity of muscle: Effects of hydrostatic pressure. Am. J. Physiol. Heart. Circ. Physiol., 273:642–646 (1997).

    Google Scholar 

  50. Stute, M. Darcy’s Law, cited; Available from: http://www.ldeo.columbia.edu/~martins/hydro/lectures/darcy.html.

  51. Jürgens KD, Peters T, and Gros G. Diffusivity of myoglobin in intact skeletal muscle cells. Proc. Natl. Acad. Sci. U.S.A., 91(9):3829–3833 (1994).

    Article  ADS  Google Scholar 

  52. Mosqued, Burnight K, and Liao S. The life cycle of bruises in older adults. J. Am. Geriatr. Soc., 53(8):1339–1343 (2005).

    Article  Google Scholar 

  53. Randeberg LL, Roll EB, Norvang Nilsen LT, Christensen T, and Svaasand LO. In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr., 94(1):65–71 (2005).

    Article  Google Scholar 

  54. Spott T and Svaasand LO, Collimated light sources in the diffusion approximation. Appl. Opt., 39(34):6453–6465 (2000).

    Article  ADS  Google Scholar 

  55. Haskell RC, Svaasand LO, Tsay T-T, Feng T-C, McAdams MS, and Tromberg BJ. Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A, 11(10):2727–2741 (1994).

    Article  ADS  Google Scholar 

  56. Randeberg LL, Bonesrønning JH, Dalaker M, Nelson JS, and Svaasand LO. Methemoglobin formation during laser induced photothermolysis of vascular skin lesions. Lasers Surg. Med., 34(5):414–419 (2004).

    Article  Google Scholar 

  57. Saidi IS, Jacques SL, and Tittel FK. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt., 34(31):7410–7418 (1995).

    Article  ADS  Google Scholar 

  58. Payne G, Langlois N, Lennard C, and Roux C. Applying visible hyperspectral (chemical) imaging to estimate the age of bruises. Med. Sci. Law, 47(3):225–232 (2007).

    Article  Google Scholar 

  59. Randeberg LL, Baarstad I, Loke T, Kaspersen P, and Svaasand LO. Hyperspectral imaging of bruised skin. In: Progress in biomedical optics and imaging, Proceedings of SPIE. San Jose, CA (2006).

    Google Scholar 

  60. Gundersen HM and Rasmussen BF. An application of image processing techniques for enhancement and segmentation of bruises in hyperspectral images. Doctoral theses at NTNU. Norwegian University of Science and Technology, Department of Computer and Information Science, Trondheim (2007).

    Google Scholar 

  61. Bohner M, Schulz K, Belenkaia L, and Liehr AW, Re-oxygenation of haemoglobin in livores after post-mortem exposure to a cold environment. Int. J. Legal Med., 122(2):91–96 (2008).

    Article  Google Scholar 

  62. Burke MP, Olumbe AK, and Opeskin K., Postmortem extravasation of blood potentially simulating antemortem bruising. Am. J. Forensic Med. Pathol., 19(1):46–49 (1998).

    Article  Google Scholar 

  63. Cabinum-Foeller E and Frasier L. Bruising in children. Lancet, 365(9468):16–22 (2005).

    Article  Google Scholar 

  64. Maguire S, Mann MK, Sibert J, and Kemp A. Are there patterns of bruising in childhood which are diagnostic or suggestive of abuse? A systematic review. Arch. Dis. Child., 90(2):182–186 (2005).

    Article  Google Scholar 

  65. Krug E (ed) Abuse of the elderly. In World report on violence and health. World Health Organization, Albany, NY (2002).

    Google Scholar 

  66. Webster GF. Common skin disorder in the elderly. Clin. Cornerstone, 4(1):39–42 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Rolf Tore Randeberg, Rune Haaverstad, Jørgen Bru, Andreas Winnem, Henrik Gundersen, Bjørn Fossan Rasmussen, Sandra Blindheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Lyngsnes Randeberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Randeberg, L.L., Skallerud, B., Langlois, N.E., Haugen, O.A., Svaasand, L.O. (2010). The Optics of Bruising. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_22

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics