Skip to main content

Elements of Hydrodynamics

  • Chapter
  • First Online:
Book cover Structure and Properties of Liquid Crystals
  • 2271 Accesses

Abstract

We shall discuss here the macroscopic dynamics of liquid crystals that is an area of hydrodynamics or macroscopic properties related to elasticity and viscosity. With respect to the molecular dynamics, which deals, for example, with NMR, molecular diffusion or dipolar relaxation of molecules, the area of hydrodynamics is a long scale, both in space and time. The molecular dynamics deals with distances of about molecular size, a ≈ 10 Å, i.e., with wavevectors about 107 cm−1, however, in the vicinity of phase transitions, due to critical behaviour, characteristic lengths of short-range correlations can be one or two orders of magnitude larger. Therefore, as a limit of the hydrodynamic approach we may safely take the range of wavevectors q ≪ 106 cm−1 and corresponding frequencies ω ≪ c s q ≈ 105⋅ 106 = 1011s−1 (c s is sound velocity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1975)

    Google Scholar 

  2. Chandrasekhar, S.: Liquid Crystals, 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  3. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1995)

    Google Scholar 

  4. Kats, E.I., Lebedev, V.V.: Dynamics of Liquid Crystals. Nauka, Moscow (1988) (in Russian) (Fluctuation Effects in the Dynamics of Liquid Crystals. Springer, New York (1993)).

    Google Scholar 

  5. Landau, L., Lifshitz, E.: Hydrodynamics, 3rd edn. Nauka, Moscow (1986) (in Russian) (see also Fluid Mechanics, 2nd edn. Pergamon, Oxford (1987)).

    Google Scholar 

  6. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Westley, Reading, MA (1964).

    Google Scholar 

  7. Atkin, R.J., Sluckin, T.J., Stewart, I.W.: Reflection on the life and work of Frank Matthews Leslie. J. Non-Newtonian Fluid Mech. 119, 7–23 (2004)

    Article  MATH  Google Scholar 

  8. Leslie, F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. (Germany) 28, 265–283 (1968)

    MATH  MathSciNet  ADS  Google Scholar 

  9. Leslie, F.M.: Introduction to nematodynamics. In: Dunmur, D., Fukuda, A., Luckhurst, G., INSPEC (eds.) Physical Properties of Liquid crystals: Nematics, pp. 377–386, London (2001).

    Google Scholar 

  10. Parodi, O.: Stress tensor for nematic liquid crystals. J. Phys. (Paris) 31, 581–584 (1970)

    Google Scholar 

  11. Miesowicz, M.: The three coefficients of viscosity of anisotropic liquids. Nature 158, 27 (1946); Influence of the magnetic field on the viscosity of para-azoxyanisole. Nature 136, 261 (1936).

    Google Scholar 

  12. Gähwiller, C.: The viscosity coefficients of a room-temperature liquid crystal (MBBA). Phys. Lett. 36A, 311–312 (1971); Direct determination of the five independent viscosity coefficients of nematic liquid crystals. Mol. Cryst. Liq. Cryst. 20, 301–318 (1973).

    Google Scholar 

  13. Helfrich, W.: Molecular theory of flow alignment of nematic liquid crystals. J. Chem. Phys. 50, 100–106 (1969)

    Article  ADS  Google Scholar 

  14. Brochard, F., Pieranski, P., Guyon, E.: Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field. Phys. Rev. Lett. 28, 1681–1683 (1972)

    Article  ADS  Google Scholar 

  15. Leslie, F.M.: Continuum theory of cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 7, 407–420 (1969)

    Article  Google Scholar 

  16. Helfrich, W.: Capillary flow of cholesteric and smectic liquid crystals. Phys. Rev. Lett. 23, 372–374 (1969)

    Article  ADS  Google Scholar 

  17. Schneider, F., Kneppe, H.: Flow phenomena and viscosity. In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W., Vill, V. (eds.) Physical Properties of Liquid Crystals, pp. 352–374. Wiley-VCH, Weinheim (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev M. Blinov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blinov, L.M. (2011). Elements of Hydrodynamics. In: Structure and Properties of Liquid Crystals., vol 123. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8829-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8829-1_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8828-4

  • Online ISBN: 978-90-481-8829-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics