Skip to main content

Elasticity and Defects

  • Chapter
  • First Online:
Structure and Properties of Liquid Crystals
  • 2316 Accesses

Abstract

Liquids have a finite and very high (as compared to gases) compressibility modulus and zero static shear modulus. For example, a boat floating on water can easily be shifted just by a finger. Even very viscous liquids, for instance, polymers, rubber, and, surprisingly, stain-glass windows have no static shear modulus although they have a dynamic shear modulus at a short time scale or at high frequencies. In fact, to shear a liquid, we should not overcome any potential barrier. In contrast to liquids, the isotropic solids, e.g., ceramics or fine polycrystalline materials have not only compressibility modulus but also one shear modulus finite. As to single crystals, they have many elastic moduli; the lower symmetry the larger a number of their moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunmur, D., Toriyama, K.: Elastic Properties. In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W., Vill, V. (eds.) Physical Properties of Liquid Crystals, pp. 151–178. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  2. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Westley, Reading, MA (1964)

    Google Scholar 

  3. Landau, L.D., Lefshitz, E.M.: Theory of Elasticity, 3rd edn. Nauka, Moscow (1969) (in Russian) (see also Theory of Elasticity. Pergamon, London (1959))

    Google Scholar 

  4. Sluckin, T.J., Dunmur, D.A., Stegemeyer, H.: Crystals that flow: Classic Papers in the History of Liquid Crystals. Taylor & Francis, London (2004) (Sect. C, pp. 139–161; 335–363)

    Google Scholar 

  5. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)

    Article  Google Scholar 

  6. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Rat. Mech. Anal. 9, 371–378 (1961)

    Google Scholar 

  7. Frank, F.C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  8. Kleman, M., Lavrentovich, O.: Soft Matter Physics. Springer, New York (2003)

    Google Scholar 

  9. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1995)

    Google Scholar 

  10. Lavrentovich, O.D., Pergamenshchik, V.M.: Patterns in thin liquid crystal films and the divergence (“surfacelike”) elasticity. In: Kumar, S. (ed.) Liquid Crystals in the Nineties and Beyond” S, pp. 251–298. World Scientific, Singapore (1995)

    Google Scholar 

  11. Blinov, L.M., Chigrinov, V.G.: Electrooptic Effects in Liquid Crystalline Materials. Springer, New York (1993)

    Google Scholar 

  12. De Gennes, P.G.: Fluctuations d’orientation et diffusion Rayleigh dans un cristal nématique. C.R. Acad. Sci. Paris 266, 15–17 (1968)

    Google Scholar 

  13. Ornstein, L.S., Kast, W.: New arguments for the swarm theory of liquid crystals. Trans. Farad. Soc. 29, 930–944 (1933)

    Article  Google Scholar 

  14. Vertogen, G., de Jeu, W.H.: Thermotropic Liquid Crystals. Fundamentals. Springer, Berlin (1987)

    Google Scholar 

  15. Kurik, M.V., Lavrentovich, O.D.: Defects in liquid crystals: homotopic theory and experimental investigations. Usp. Fiz. Nauk. 154, 381–431 (1988) [Sov. Phys. Uspekhi 31, 196 (1988)]

    Article  MathSciNet  Google Scholar 

  16. Kléman, M.: Points, Lines and Walls. Wiley, Chichester (1983)

    Google Scholar 

  17. De Gennes, P.G.: Conjectures sur l’etat smectique. J. Physique (Paris) 30, Colloq. C.4, C4-62–C4-68 (1969)

    Google Scholar 

  18. Bartolino, R., Durand, G.: Plasticity in a smectic A liquid crystal. Phys. Rev. Lett. 39, 1346–1349 (1977)

    Article  ADS  Google Scholar 

  19. Bouligand, Y.: Defects and textures. In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W., Vill, V. (eds.) Physical Properties of Liquid Crystals, pp. 304–374. Wiley-VCH, Weinheim (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev M. Blinov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blinov, L.M. (2011). Elasticity and Defects. In: Structure and Properties of Liquid Crystals., vol 123. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8829-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8829-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8828-4

  • Online ISBN: 978-90-481-8829-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics